

Modeling of QUENCH bundle tests using ASTEC v2.0p2 -towards new benchmark activities at KIT-

H. Muscher

18th International QUENCH Workshop, Karlsruhe, 20.-22. Nov. 2012

Institute for Applied Materials Materials Process Technology, Programme NUKLEAR

QUENCH test matrix

Test	Quench medium / Injection rate	Temp. at onset of flooding	Max. ZrO ₂ before transient	Max. ZrO ₂ before flooding	Max. ZrO ₂ after test	H ₂ production before / during cooldown	Remarks, objectives
QUENCH-00 Oct. 9 - 16, 97	Water 80 g/s	≈ 1800 K			completely oxidized		commissioning test
QUENCH-01 February 26, 98	Water 52 g/s	≈ 1830 K	312 µm		500 μm at 913 mm	36 / 3	pre-oxidized cladding
QUENCH-02 July 7, 98	Water 47 g/s	≈ 2400 K			completely oxidized	20 / 140	COBE: no additional pre- oxidation
QUENCH-03 January 20, 99	Water 40 g/s	≈ 2350 K			completely oxidized	18 / 120	no additional pre-oxidation
QUENCH-04 June 30, 99	Steam 50 g/s	≈ 2160 K	82 µm		280 µm	10/2	slightly pre-oxidized cladding
QUENCH-05 March 29, 2000	Steam 48 g/s	≈ 2020 K	160 µm		420 µm	25 / 2	pre-oxidized cladding
QUENCH-06 Dec. 13 2000	Water 42 g/s	≈ 2060 K	207 µm	300 µm	670 µm	32 / 4	OECD-ISP 45
QUENCH-07 July 25, 2001	Steam 15 g/s	≈ 2100 K	230 µm		completely oxidized	66 / 120	COLOSS: B ₄ C
QUENCH-09 July 3, 2002	Steam 49 g/s	≈ 2100 K			completely oxidized	60 / 400	COLOSS: B ₄ C, steam starvation, very high T
QUENCH-08 July 24, 2003	Steam 15 g/s	≈ 2090 K	274 µm		completely oxidized	46 / 38	reference to QUENCH-07 (without B ₄ C)
QUENCH-10 July 21, 2004	Water 50 g/s	≈ 2200 K	514 µm	613 μm (at 850 mm)	completely oxidized	48 / 5	LACOMERA: air ingress
QUENCH-11 Dec 08, 2005	Water 18 g/s	≈ 2040 K		170 µm	completely oxidized	9 / 132	LACOMERA: boil-off
QUENCH-12 Sept 27, 2006	Water 48 g/s	≈ 2100 K	160 µm, breakaway	300 µm, breakaway	completely oxidized	34 / 24	ISTC: VVER
QUENCH-13 Nov. 7, 2007	Water 52 g/s	≈ 1820 K		400 µm	750 µm	42 / 1	SARNET: Ag/In/Cd (aerosol)
QUENCH-14 July 2, 2008	Water 41 g/s	≈ 2100 K	170 µm	470 µm	840 µm	34 / 6	M5 [®] cladding
QUENCH-15 May 27, 2009	Water 48 g/s	≈ 2100 K	145 µm	320 µm	630 µm	41 / 7	ZIRLO [™] cladding

Introduction/ Motivation/ Outline of the PSI- Benchmark Exercise

- ASTEC 2.0 rev.1Modeling / CORA-13 at first; Quench exp. sim. followed: level controlled by auxiliary feed water injection
- → Validation against exp. -code to data but still not code to code-
- →Training course at IRSN 1/2011, especially ICARE which describes phenomena occurring in the degradation phase. Clad oxidation, rods heat up and melting etc.
- QUENCH <u>experiments</u> provide data for development of models & codes:
- App. of ASTEC on Quench problems/ comparing Zry-4, M5[®], E110
- At first only ICARE, ODESSA and MDB use
- BCs, Core degradation parameters/ Nominal s-s: given both by PSI and KIT
- The objectives /the scope of the BE -clearly outlined: radial and axial bundle profiles (power) according to specification as well as the Q-facility geometry
- Chronology of main events- given in a quick look table: FZKA reports

	Event			
0 S	Start of distaneounding, test bundle at 873 K (TiT A/13), data acquisition frequency at 1 Hz. Oxidation steam: 3.0 g/s @ 773 K	0	Start data recording. Trans #TFS 6/14#871 K, el. pover switches from 4.3 to 9.7 WV. Start of pre-oxidation phase in Start characterization of the STR 2.4 which and serve if the STR 2.4 which are started as the STR 2.4 which are st	
581 S	Start of heatup from 3.85 kW	(10:41:35h)	gas moture of overheased steam (Fm 205 = 3.4 gis) and argon (Fm 4018 = 3 gis).	
2025 1	12.5 kW electric power reached. TIT A/13: 1285 K	2291	EI. power switched from 9.8 to 10.8 kW. Trap = TFS 4/13 = 1306 K.	
E	End of first transient. Temperature of 1593 K (TIT A/13) reached. End of electric power plateau at	3002	EI. power switched from 10.8 to 11.3 W. T _{mer} = TFS 4/13 = 1360 K.	
2523	-12.5 kW.	6301	Start of cooking phase. Reduction of el. power from 11.3 to 3.9 kW. T _{max} = TFS 4/13 = 1428 K.	
3710 F	First rod failure (He detection)	(12:26:34h) 7249	Corner rod B withdrawn.	
9319 E	End of pre-oxidation phase. Reduction of electrical power from 12.15 kW to 6.9 kW. TIT A/12: 1886 K.	7307 (12:43:22h)	Start of air ingress phase. Turn on the air flow with flow rate 0.2 g/s. Switch of argon flow from 3 g/s to 1 g/s. Switch of of sissem supply (0.g/s at 7319 s). Trage TPS 0.14 = 998 K.	
10113 N	Nast and failure (P411: He datastine)	7321	First indication of air at mass spectrometer.	
11353-11273	Withdrawal of comer rod B. TIT A/12: 1193 K	10270	Appelerated temperature increase at bundle elevation 9 (550 mm). TCR 9 increased from 1445 to 1620 K.	
11528 0	Data acquisition frequency at 5 Hz		Accelerated temperature increase at bundle elevation 8 (450 mm), TFS 4/8 increased from 1200 to 1700 K.	
11020-11028 S	Start of air ingress. Reduction steam to Og/s	10300		
11000 T	Target air flow 1.0 gis reached	10350	Transition to complete <u>oxygen stanistion</u> and to partial nitrogen consumption. Decrease of nitrogen flow rate	
12470 E	El, power increase from 6.9 kW to 7.3 kW	19850	through the off-gas pipe from 0.16 to 0.13 g/s.	
13000 E	EI, power increase from 7.3 kW to 7.7 kW	10500 11120	Accelerated temperature increase at bundle elevation 7 (350 mm). TCR 7 increased from 1205 to 1700 K.	
13126 E	EL power increase from 7.7 kW to 8.1 kW	10900	Pinst rod harrone. Po indication at mass spectrometer.	
13276	Although all of course and D (TES EQ) TIT A/15 2045V	11341	Accelerated temperature increase at bundle elevation 6 (250 mm). TPS 15/6 Increased from 1115 to 1400 K.	
		11200	Initiation of fast water injection. Stop of overheated gas and argon supply (closing of the V 302 valve). Reaction of	
13393 E	End of air ingress. Quench initiation. TIT A/13: 2198 K: TSH 13/90 I: 2083 K	11250	the T611 bundle inlet thermosouple.	
13397 5	Second Sales IP 405 TEM 1201 TCI 1201	11413	Initiation of guench water supply (Fm 104 increased from 0 to 53 g/s).	
10001 0	annous lander (* Hoo, 1 am 12/01, 1 Gr 12/0)	11352	Release of Automas and alternate	
13404 5	Start of electric power reduction from 8.1 W to 3.9 kW. TIT A/13: 2116 K	11560		
		11380	Shroud failure: flow of argon from the shroud annulus into the bundle (Fm 405 increase).	
13407 E	Electric power at 3.9 kW (simulation of decay power)		Intensive water boiling in bundle (eveporationrate de, 53 g/s), indication by increased off-gas flow rate (P 601); constant collapsed water level at elevation L 501 = 530 mm.	
13429 R	Rod failures (P411: He detection)	11530	Constant evaporation rate ca. 47.3 g/s (according to coolant channel of 33.65 cm?). Increase of collapsed wa	
13541 W	Nater reached the off-gas pipe (TFS 512 wetting)	11780	Hevel from exercision C 501 = 570 mm to C 501 = 355 mm. Thermocouples TFS 13/17 and T 512 at bundle elevation 1350 mm wetted with double-phase fluid. Collapsed	
13712 5	Start of power shutoff	11830	water level at elevation L 501 = 1194 mm.	
13713 0	Quench water shutoff (F 104)		Shut down of the quench pump (Fm 104 decreased from 63 to 0 g/s).	
13714 E	Electric power below 0.3 W	14828	Shut down of electrical power supply (power reduction from 3.6 to 0 kW).	
13731 G	Quench water at zero	14540	End of data recording. Stop of Ar flow into stroud annulus. Bundle T _{max} = TFS 10/12 = 380 K; stroud T _{max} = TFS 10/12 = 360 K; stroud T _{max} = TFS 10/12 = 360 K; stroud T _{max} = 1000 mm. Total collected conference water 23002 a (according to 1, 201)	
13740 D	Data acquisition frequency at 1 Hz	(14:40:30h)	L 501 = 654 mm - corresponding water mass inside bundle is 6590 g (measured after bundle dismounting). Water	
10079 E	End of data recording	(48.97.11)	mass inside shroud annulus: 7264 g.	

Chronology of main events- a quick look table (BE Stage 1)

Time [s]	Event	
0	Start of data recording, test bundle at 873 K (TIT A/13), data acquisition frequency at 1 Hz. Oxidation steam: 3.0 g/s @ 773 K	
581	Start of heatup from 3.85 kW	
2025	12.5 kW electric power reached. TIT A/13: 1285 K	
2523	End of first transient. Temperature of 1593 K (TIT A/13) reached. End of electric power plateau at \sim 12.5 kW.	
3710	First rod failure (He detection)	
9319	End of pre-oxidation phase. Reduction of electrical power from 13.15 kW to 6.9 kW. TIT A/13: 1695 K	
10113	Next rod failure (P411; He detection)	
11353-11373	Withdrawal of corner rod B. TIT A/13: 1193 K	
11528	Data acquisition frequency at 5 Hz	
11626-11628	Start of air ingress. Reduction steam to 0 g/s	
11660	Target air flow 1.0 g/s reached	
12470	EI. power increase from 6.9 kW to 7.3 kW	
13000	EI. power increase from 7.3 kW to 7.7 kW	
13125	EI. power increase from 7.7 kW to 8.1 kW	
13275	Withdrawal of corner rod D (TFS 5/9). TIT A/13: 2085 K	
13393	End of air ingress. Quench initiation. TIT A/13: 2196 K; TSH 13/90 I: 2083 K	
13397	Shroud failure (P 406, TSH 12/0 I, TCI 12/0)	
13404	Start of electric power reduction from 8.1 kW to 3.9 kW. TIT A/13: 2116 K	
13407	Electric power at 3.9 kW (simulation of decay power)	
13429	Rod failures (P411; He detection)	
13541	Water reached the off-gas pipe (TFS 512 wetting)	
13712	Start of power shutoff	
13713	Quench water shutoff (F 104)	
13714	Electric power below 0.3 kW	
13731	Quench water at zero	
13740	Data acquisition frequency at 1 Hz	
16079	End of data recording	

Time [s]	Event			
0	Start data recording, T _{max} =TFS 6/14=871 K, el. power switched from 4.3 to 9.7 kW. Start of pre- oxidation phase in gas mixture of overheated steam (Fm 205 = 3.4 g/s) and argon (Fm 401B = 3 g/s).			
(10:41:35h)				
2291	El. power switched from 9.8 to 10.8 kW. T _{max} = TFS 4/13 = 1306 K.			
3002	El. power switched from 10.8 to 11.3 kW. T _{max} = TFS 4/13 = 1360 K.			
6301 (12:26:34b)	Start of <i>cooling phase</i> . Reduction of el. power from 11.3 to 3.9 kW. T _{max} = TFS 4/13 = 1428 K.			
7249	Corper rod B withdrawn			
7210				
(12:43:22h)	Start of <i>air ingress phase</i> . Turn on the air flow with flow rate 0.2 g/s. Switch of argon flow from 3 g/s to 1 g/s. Switch-off of steam supply (0 g/s at 7319 s). T_{max} = TFS 6/14 = 998 K.			
7321	First indication of air at mass spectrometer.			
10270 10400	Accelerated temperature increase at bundle elevation 9 (550 mm). TCR 9 increased from 1445 to 1620 K.			
10300 10800	Accelerated temperature increase at bundle elevation 8 (450 mm). TFS 4/8 increased from 1290 to 1700 K.			
10250	Transition to complete everyon stanistion and to partial pitragen consumption. Decrease of pitragen			
10650	flow rate through the off-gas pipe from 0.16 to 0.13 g/s.			
10500 11120	Accelerated temperature increase at bundle elevation 7 (350 mm). TCR 7 increased from 1205 to 1700 K.			
10587	First rod failure: Kr indication at mass spectrometer.			
10900 11341	Accelerated temperature increase at bundle elevation 6 (250 mm). TFS 15/6 increased from 1115 to 1400 K.			
11330	Corner rod D withdrawn.			
11341	Initiation of <i>fast water</i> injection. Stop of overheated gas and argon supply (closing of the V 302 valve). Reaction of the T511 bundle inlet thermocouple.			
11350 11413	Initiation of quench water supply (Fm 104 increased from 0 to 53 g/s).			
11352	Release of hydrogen and <u>nitrogen.</u>			
11380	Shroud failure: flow of argon from the shroud annulus into the bundle (Fm 406 increase).			
11395	Intensive water boiling in bundle (evaporation rate ca. 53 g/s); indication by increased off-gas flow rate			
11530	(F 601); constant collapsed water level at elevation L 501 = 530 mm.			
11530	Constant evaporation rate ca. 47.3 g/s (according to coolant channel of 33.65 cm ²). Increase of			
11780	collapsed water level from elevation L 501 = 570 mm to L 501 = 995 mm.			
11830	Thermocouples TFS 13/17 and T 512 at bundle elevation 1350 mm wetted with double-phase fluid. Collapsed water level at elevation L 501 = 1194 mm.			
12047	Shut down of the quench pump (Fm 104 decreased from 53 to 0 g/s).			
14625	Shut down of electrical power supply (power reduction from 3.6 to 0 kW).			
14640	End of data recording. Stop of Ar flow into shroud annulus, Bundle Terrer = TFS 10/12 = 390 K: shroud			
(14:45:36h)	$T_{max} = TSH 16/180 = 405$ K. L 501 = 1020 mm. Total collected condensed water 33602 g (according to L 701).			
(28.07.11)	L 501 = 654 mm – corresponding water mass inside bundle is 6590 g (measured after bundle dismounting). Water mass inside shroud annulus: 7264 g.			

1st steps in ASTEC v.2.1/ some progress presented elsewhere

Karlsruhe Institute of Technology

- contract between GRS and KIT on ASTEC usage signed 28.10.2010
- Overview of the integral code ASTEC v2.0"
- "Evolution of ASTEC v2.0-rev1 with respect to the v2.0 source"
- ASTEC principles and general modeling features
- focus on the ICARE part within "ASTEC Training Course material"
- detailed ICARE user's manual; guidelines; **MARCUS** (web)
- At first: Understanding of "quench05.dat" input deck in the context of the KIT- QUENCH facility real design (TCs, etc)
- best-estimate ASTEC-ICARE input deck for Q tests : Q-10, Q-13 Q-16: work is underway: Stabilization/ Heat up/ Pre-ox/ Transient heat up/ Quenching
- activities: KIT Internal Q-14 report published + available
- Q-05 /-06 /-11 /-14 simulated with ASTEC V2.0 rev.1
- QUENCH-10/-13/-16 to be further simulated
- Participation at GRS-IRSN; OECD TG- meetings / ERMSAR conference 2013 planned
- KIT-ASTEC **1.3** work done already 2006 by others (nodalization schemes, data fields, etc.
- Calc. on the Zry-4 cladding /steam interactions using SVECHA 2.0/10.0 performed QWS 16
- hydrogenation in LORA

ASTEC activities concerning QUENCH tests at KIT

The aim is to present results of modeling **Q-5**, **Q-6**, **Q-11**, **Q-14**, (later **Q-10**, **Q-16**, Karlsruhe Institute of Technolog **Q-13**) using ASTEC & test the applicability of ASTEC for modeling Q- experiments, which investigate the H₂ source term resulting from the water injection into an uncovered core as well as the high temp. behavior of core materials under transient conditions.

- Q-pre-test and post-test calculations done by others (using different tools, other experience..)
 App. of ASTEC to Q-experiments, code validation:
 - > Water quench: Q-06 (ISP-45) Q-11 (Q-L2); air ingress Q-10/ Q-16
 - Assessment of core degradation/ delayed core reflood

Preparation of Q-10/ Q-16 IDs /SARNET Code BE: KIT the only one ASTEC participant so far ASTECv1.3 produced in former times somehow conflicting results because of an extrapolation of solid-state models to the processes in the liquid phase. The modeling of Zr-O melt oxidation, being independent of solid state processes, needs more consideration

 \rightarrow KIT ASTEC 1.3 IDs were rewritten, updated, for the purposes of the new ASTEC 2.0 rev2p2 (work done for **Q-06/Q-11/Q-14**): New IDs work in progress for Q-10; Q-16 Adopting 2D-MAGMA tool can lead to better results in simulating Q-tests than 1Dcandling.

- Revision according to new BE specifications
- → CORE MESHING: 6 radial fuel rings; 20 axial meshes
- Inconel grids added
- Apart of this,
- Q-13 v2.0. ID will be created based on optimized Q-11 ID.

Heinrich Muscher

The QUENCH-14 experiment

Q- Test section/ Modeling

•axial meshes, representative simulated fuel rods

standard and improved Ar/O₂ ox kinetics

Superheated steam from the SG and Superheated retrieve of Technology together with Ar enter test bundle at the bottom. Ar, steam and H_2 produced flow upwards inside the bundle and from the outlet at the top through a water-cooled off-gas pipe to the condenser, where the remaining steam is separated from the non-condensable gases Ar and H_2 .

Facility:

21-rod type bundle, spacer grids

•rods el. heated with W bars (heated length: ca 1m)

- one central rod not heated used for instrumentation
- cladding: Zry, with annular pellets placed between W rods and the cladding itself

• air injection at the bottom part of the bundle

Test description (differs):

• pre-ox phase at >900°C by injection of Ar+25 % O_2 gas mix aiming at creating a ca 50 µm oxide layer

• air ingress phase init. at 900°C max temp. with injection of room temp. air and power kept const

• termination of the test foreseen at 2100°C max cladding temp by rapid cooling in a high flow of Ar at room temp with power switched off

The Q-14 experiment

Test bundle made of 21 fuel rod simulators and of 4 corner rods, held in their positions by 5 grid spacers, 4 of Zry-4, and one of Inconel 718 in the lower bundle zone.

Q-14: rod cladding is M5[®] (AREVA)

The total heating power is 70 kW. About 40 % released into the inner, 60 % in the rod circuit (8 +12 fuel rod simulators, accordingly).

Test bundle surrounded by a 3.25 mm thick SH (80 mm ID) made of Zry-4 with a 37 mm thick ZrO_2 fiber insulation and an annular CJ of Inconel 600 (inner) and SS (outer tube).

Q-14 : investigation of M5[®] cladding effect on bundle oxidation and core reflood, in comparison with Q-06 where Zry-4 was used. Nearly the same protocol, to observe the effects of the change of cladding easily

		Ê 10 ² Zirlo-
Parameter	KIT_ASTEC	500°C 10' M5 Zrcaloy-4
Zry-4/ M5 ox kinetics	Cathcart-Pawel (low temp. range)	
	Prater-Courtright (high temp. range)	0 200 400 600 800 1000 Exposure time in air (h)
Cladding failure criteria (T = clad temp) $(\varepsilon = ZrO_2 layer$ thickness)	T > 2300 K and ε < 0.3 mm; T > 2500 K and ε > 0.3 mm	(%) papipos 10 ¹ Zircaloy-4 600°C <u>Zircaloy-4 60</u> °C <u>M5</u> Zircaloy-4 500°C <u>M5</u> Zircaloy-4 500°C

QUENCH-14 ID adaptation

For modeling Q-14 an existing Q-06 ID, developed by S. Melis (IRSN) was adapted karlsruhe Ir

- the TYPE 'SOURCE' was changed to 'BREAK', the option 'CONT 0' for imposed contact of the SH was suppressed both thanks to a recommendation of S. Bertusi (MARCUS-cards)
- The stru for modeling convection, is subdivided to two, every of the two substructures contain only one fluid channel: CAN1 and WCAN1 By the implemented changes, Q-14 IDs for ASTECv2.0R2p2 were obtained The Q-14 test phases were as follows:

Heatup to 873 K. Facility check. Ph I Stabilization at ~873 K. Ph II heat-up ~0.3-0.6 K/s to ~1500 K

- Phase IIIPre-ox of the test bundle in a flow of 3 g/s of superheated steam and 3 g/s Ar for ca.3000 s at relatively const. peak temp. of ~1500 K. Withdrawal of corner rod B at the end.
- Phase IV Transient heat-up with 0.3...2.0 K/s from ~1500 to ~2050 K in a flow of 3 g/s

of superheated steam and 3 g/s Ar. Withdrawal of corner rod D ~30 s before quench initiation.

- Phase V Quenching of the bundle by a flow of ~41 g/s of water.
- For (1073–1673)K, the M5[®] ox kinetics obtained at KIT is taken *(Mirco Grosse, SET, Fig.16)* for (1674- 2050 K) the existing data for Zry-4 were used instead of the –missing- M5[®] values
- El. power of two circuits of heating rods are changed in accordance to exp. results.
- The exp. data for temp-s are changed as they were presented for exp. data for three types of rods – central, one from the internal group and one from the outer group.
- The exp. data points for H₂ prod were changed according to exp. results from Q-6 to Q-14
- Visualization functions are added into the Q-14 ID : the rate of H₂ prod.[kg/s]; cladding layer thickness evolution vs. *t* and cladding layer thickness in function of elevation the presented simulation for Q-14 is a proof for a lower oxidation rate of M5[®] for T<1650 K and the lower H₂ generation in the phases before quench.

Q-05

Carlsruhe Institute of Technolog

Heinrich Muscher ID: courtesy P. Kruse, LEE KIT - IAM

Interner Bericht 32.22.11 3452 NUKLEAR November 2012

Q-14

Results using ASTECv2.0R2p2

Temp. field before quenching , 3000 s

Temp. field, 7600 s - (the end)

1)central rod (U), heated rods/ inner, outer rings H1/H2, corner rods (C1;C2), SH; insulation. In the end of the calc. (7600s) the highest temp. are over the insulation and the CJ - height 750 mm

2) In correspondence to the height of max. calculated oxide thickness which was at 950 mm, Time evolution of cladding layer thickness was obtained In the end of the exp. the fraction of ZrO becomes the largest one of all. On the 2^{nd} place the fraction of ZrO_2 and at the 3^{rd} -the Zr contribution. In the case of inner ring rod ox. the visualization showed, that the according oxide thicknesses (ZrO and ZrO_2) are larger than in the cases of the unheated rod and outer ring rod

Results by ASTECv2.0R2p2

1) Calc. extreme temp. (Fig. A) is close to the exp. data at "hottest" elevation of 950mm (Fig.B, but the max. calc. value just before quenching was ca 2000K in comparison to 2150 K for the exp. The difference may be explained with the ox. correlation for Zr-4 used for the highest temp-s. 2) The calculated H₂ prod by ASTECv2.0R2p2 is about 32g (40g in the exp). The ASTEC results are close to exp. ones in the phases before quench. at (1674-2050)K existed data for Zry-4 were used \rightarrow the obtained results for H₂ prod at quench are under-estimated.

Results by ASTECv2.0R2p2

Fig.A Rod temp. - heat-up phase

Fig.B Rod temp. - transient and quench phase

Rod temp.-s were calc: via ASTEC: unheated central fuel rod (TCRC13), one heated rod from the inner ring of 8 rods (TFS4/9) and one heated rod from the outer ring of 12 rods (TSH5/0). The highest temp.-s were calc. for the inner rod TCRC13, where the max. of ca 1900K was found just before quench. Corresponding temp. of TFS4/9 being ca 1500K and of rod TSH5/0 is 900K. There is an acceptable difference towards the exp. data of about 100K for all of the three rods.

Discussion of Q-14 ASTEC V2.0 results (cont`d)

The possible reason - need for further modeling of such phenomena as

- 1) H_2 abs. and release by cladding,
- 2) oxidation of Me-melt formed between cladding and pellets;
- 3) formation of quite thick oxide layer at the inner cladding surface in the region of melt ox

The max. oxide thickness calc. for the central unheated rod is ca 630 μ m at a height ca 950 mm in comparison to 860 μ m at the same height from exp. At the same height, approx. the same (ca 650 μ m) is the max. layer thickness for inner ring rod . For the rod from the outer ring, the max. oxide thickness is about 630 μ m at the same height. In the SH calculated oxide thickness is of ca 650 μ m : this result is similar to the exp. value of 590 μ m.

The axial temp. profiles from the beginning of the calc. to the quench phase are similar for all rods and the SH.

and they are higher in comparison to the temp. of the CJ. The highest temp. in this time period is calc. for the heated rod in the height of about 950 mm, as in the case of the exp.

After the beginning of quench phase the temp.-s of the rods and the SH start to decrease in correspondence to rapid changes in the water level. In the end of the calc. at 7600 s, the highest temp.-s at levels down to 1 m were calc. over the CJ and the max. is found at a height around 750 mm. At heights up to 1 m the temp.-s of the rods and the SH remain higher in comparison to temp. of the CJ. (see our internal KIT-report)

Zr ox. by steam/ a lit. overview (ZrN..)/ AIT simulations done at IRSN

- Nitride formation correlation from Th. Hollands PhD. Diss. can be used
- 2 different reaction rates with / without pre-oxidation (PO) are given;
- Reaction rate for the cases "without pre-ox" was selected up till now, as the correlation for use "with pre-ox" lead to wrong behavior (too high rates for lower temp-s; too low rates for higher temp-)
- Limitation of the calculated reaction rates to max. 2.0.10⁻⁴ (T>1800 K)
- E of activation of ZrN formation model for cases, where p₀₂/p < 1.0·10⁻²; full rate could be calculated if p₀₂/p < 1.0·10⁻³
- The time dependency of the O₂ consumption could be calculated in good agreement with measured data with the new correlation of Steinbrück with a shift in the interpolation region
- > The starvation condition reaches also lower bundle elevations (\rightarrow 350 mm) AIT case study:

The t-dependence of the N₂ consumption can be calc. in good agreement with measured data with the correlation of Hollands (derived from SETs, Ziegler, KIT), where the rate "without pre-ox" was used;

- The calc. with leak simulation shows good agreement between calculated and measured liquid levels (Q- fronts)
- The AIT bundle is cooled down till T_{min} within 670 s after start of quenching (11350s 12020 s) fronts / Rod temp-s during quenching (at 950 mm)
- Max. oxide layer of ~ 200µm after pre-ox (7000 s) for rods at 850 / 950 mm
- Max. oxide layer of 670 μ m at end of simulation at 750 mm
- Max. ZrN layer of 200 μm at end of simulation (15000 s) at 650 / 750 mm

rith pre-oxidation

Zr-Oxo-Nitriding: process that enhances oxide degradation

Karlsruhe Institute of Technolog

- Oxide phases: ZrO_2 , ZrO_x
- Nitride phases: ZrN, Zr₃N₄
- Oxynitride phases

(intermediate between ZrO_2 and $ZrN_{4/3}$ i.e. $ZrO_{2-2x}N_{4x/3}$) b': $Zr_7O_{11}N_2$: 21% mol $ZrN_{4/3}$ i.e x= 3/14 b: $Zr_7O_8N_4$: 43% mol $ZrN_{4/3}$ i.e x= 3/7 g: Zr_2ON_2 : 75% mol $ZrN_{4/3}$ i.e x=3/4

- Phase $\Delta_r G [kJ/mol]$ at 2300K ZrO₂ -675 [THERMODATA]
- ZrN -151 [THERMODATA]
- ZrON 1071 [Gutzov]

In case of simultaneous oxidation and nitriding of Zr [Powers]:

- ZrO_2 being the most stable compound; if nitriding takes place, the product will react with O_2 • Nitride will be detected only if the O_2 reaction rate becomes too slow compared with nitride rate formation...But lack of data above kinetics of O_2 reaction with nitride products
 - Me creep $\Rightarrow \uparrow$ area exposed to air/ further propagation to the whole sample Spatial non uniformity of the ox process \Rightarrow local init. of the breakaway transition;

Nitridation of ZrO₂ (SET at IAM/KIT former IMF I)

Karlsruhe Institute of Technology

It has been shown *[Lerch et al.]* that ZrO_2 can be nitrided directly at temp. above 1400°C in a N₂ $ZrO_2 + \frac{2x}{3}N_2 \leftrightarrow ZrO_{2-2x}N_{4x/3} + xO_2$

The kinetics follows a lin law, with $K_0=128$ m/s

Get detailed ox kinetics data /understanding of the Zr alloys ox mechanisms

-M. Steinbrück, Tina Ziegler-

description of the air ox model in ASTEC

2700-() 2200-Temperature 1 1985 ZrN 1880 82. 1200αZr 700 40 50 10 20 зo 60 Zr Atomic Percent N Ν

Phase diagram Zr-N.

Zr-oxidation Kinetic transition/ + some thermodynamic considerations

➢ some thermodynamic balance

>1) Correlation: either based on the assumption that the kinetic transition is linked with transformation of tetragonal to monoclinic ZrO_2 [Cox,1976,Schanz/Leistikow 1981],or 2)Arrhenius:

$$(\frac{\Delta m}{S})_{break} = 3.19 \times 10^5 (\frac{T_b}{H_{tr}(T - T_b)})^{2.27328}$$

$$K = K_0 e^{-E_a/RT}$$

-Olivia Coindreau-

Conclusions/1

 we believe, that ASTEC has the potential to simulate QUENCH air ingress experiments^{stitute of Techno} (evidence was given here for **an other case**: Zry-4/ E110/ M5), nevertheless enthalpies of ZrN formation – still a problem; as well as nitradation as such

• \rightarrow special ASTEC strength will be the incorporation of N₂-modeling – but this not before 2014

- •Dynamic behavior (time dependences; evolution)/ profiles developed can be visualized online ...
- •Developing new skills / further insight into the philosophy behind ASTEC...Reference ID adopted..
- •Java Data Editor **JADE/ PSPAD**: -I can recommend both here (color coding !)/ **WinMerge**, too •captured trends must be consistent with the (intuitive) expectation

•Results are dependent on the imposed BC/IC: Q-5/ Q-6/ Q-11; Q-14 output is satisfactory to us

•Tables, figures and spread sheets with the for **Q-10/Q-16** material will be submitted to our BEchairwoman Leticia M., results should be presented **at the next ERMSAR 2013** meeting •Actions foreseen for this stage: some requirements are still not fulfilled, **work is ongoing/ not completed yet, nevertheless:**

•Suggestions for the BE 1st stage followed/ (like comments to the draft , style, grammar...)

- as an outcome: **standardized Q-10/Q-16 EXCEL plots** (transients) will be delivered to PSI, and hopefully presented ERMSAR final conference
- ✓ ASTEC in SARNET2 (WP5) Ox models at the current State of the Art/ (but not nitriding!)
- ✓ best fit (Schanz` recommendation) kinetics of Zry ox by steam /sensitivity studies possible
- Coupling with SUNSET for uncertainty ("propagation of uncertainties": related study): GRS,
 SUSA- approach of 1992 for "code to code" data set comparisons /final report
- ✓ Analysis of base case results regarding transient **thH** of Q-experiment plausible SA-scenarios

Conclusions2 –lessons learned adopting the SET and AIT sim. knowledge-

- Cladding Zr-4 [600-1000°C] ox kinetics can not be described only by parabolic law, seristive of Technology because of breakaway-transition to fast kinetics
- >Above 800°C, the transition is associated with **nitriding**. The ZrN formation begins because of a high N₂ conc. in the gas phase due to O_2 starvation
- >Once nitriding has begun, a porous oxide grows under the influence of a self-sustained ZrN + $O_2 \rightarrow ZrO_2 + 1/2N_2...$ sequence (N₂ is trapped in the cladding). It leads to fast degradation

Air ox in pre-breakaway regime- parabolic law

- ➢ Breakaway transition: correlation between a critical weight gain at transition and temp. by an hyperbolic law. Assumption: breakaway transition is linked with transformation of tetragonal to monoclinic ZrO₂ Post-breakaway: modeled by an accelerated law, scaling rate increasing linearly
- "difficulties linked to the pre-ox phase/ limits of the models reached-it improves already the results"
- Perspectives (future prospects) further validation of the models on Q-10/ Q-16
- •in Olivia`s C. AIT simulations, modeling of the pre-breakaway by a sub-parabolic law required
- error in cladding temp prediction $\Rightarrow K_p$ coeff. is strongly temp dependent
- at low temp: modeling of the **post-breakaway by an accelerated law** whereas a lin kinetics observed at 850°C
- Underestimation of the K_a coeff. (Arrhenius). simulated scaling rate is too high:900-950°C total ox in 150-80min
- kinetic transition occurs too early: determination of t_{break} difficult, due to the non-uniformity=
 =inhomogeneneity of the ox process (starvation conditions)
 Olivia Coindreau-
- oxide layer is thicker close to air inlet, where breakaway occurs at first

Acknowledgement: thank you, J. Stuckert, P. Kaleychev, P. Chatelard, S. Bertusi, P. Kruse, W. Hering, Thank you all.

Outlook/ next stage (after ERMSAR 2013)

- ✓ further ASTEC activities: (reflood map, sensitivity..) Continuing work with ASTEC v2.0r1p2
- ✓ Nitradation further modeling an obvious need preliminary / lit. study done, also for ZrON
- ✓ pointing out the key parameters in order to evaluate their impact on air ingress, bundle coolability and H₂ production.. (especially for Q-10/Q-16) to be done
- ✓ Optional: Uncertainty Analysis with IRSN-SUNSET or SUSA / GRS
- ✓ An ERMSAR paper will be prepared in cooperation with PSI et al.— data to be delivered soon
- Mandatory further work still to be continued: further developing of modified IDs exact fulfilling the BCs recommendations...)
 - early phase modeling (HT, mechanical behavior, chemistry, movement of material) the instantaneous or t cumulated (integral) H_2 production rate [kg/s]/ [kg] during the Q- phase

OC- Lit: study: CITATION "temp rises too quickly during the air ingress in the simulations:

- Protective oxide layer not thick enough,

- T correlations used up till now (for **non PO** cladding) overestimate the mass gain (and so the enthalpy of the chemical reaction) for **PO cladding**

Not enough N_2 taken from the gas phase:

Criterion to switch from ox. to nitridation based on an inappropriate "critical starvation coeff."

Not enough H₂ generated during reflood:

-Specific models for reflood and **shaterring** should be used including **ox. after nitridation** Lacks in ICARE modeling identified, consulted with P. Chatelard (**development currently underway: ASTEC** source code changes to be finished 2014 as a part of ASTEC v2.1– info IRSN):

suitable criterion to switch from ox to nitradation (probable influence of the th-Hydraulics)

• model for **reox of ZrN for scale** thicknesses at the end of the pre-ox phase, where reox. is quite low"