

Experimental and Post-Test Calculation Results of the Integral Reflood Test QUENCH-12 with a VVER-type Bundle

J. Stuckert, M. Große, M. Steinbrück Forschungszentrum Karlsruhe

^F Computational and Experimental Studies of LWR Fuel Element Behavior under beyond Design Basis Accidents and Reflood Conditions: Internat.Scientific and Technical Meeting, Moskva, Russia, July 27-28, 2009

High-Temperature Materials Behavior andSector Institute of TechnologyFlooding of an Overheated LWR Core and Hydrogen Source Term

QUENCH-12Test bundle assembling

bundle top

bundle bottom

J. Stuckert, FZK/IMF

Test Matrix (1998-2008)

Test	Test date	Quench medium	Flooding rate, g/s	Remarks
QUENCH-01	Feb 26, 1998	Water	52	EC COBE
QUENCH-02	July 07, 1998	Water	47	EC COBE
QUENCH-03	Jan 20, 1999	Water	40	As Q-02 but flooding delayed
QUENCH-04	Juni 30, 1999	Steam	50	Steam, reference
QUENCH-05	March 29, 00	Steam	48	As Q-04 but with pre-oxidation
QUENCH-06	Dec 13, 2000	Water	42	OECD ISP-45; As Q-05 but with water flooding
QUENCH-07	July 25, 2001	Steam	15	EC COLOSS; B ₄ C absorber
QUENCH-08	July 24, 2003	Steam	15	As Q-07 but without B₄C absorber
QUENCH-09	July 03, 2002	Steam	49	EC COLOSS; As Q-07 but under steam starvation
QUENCH-10	July 21, 2004	Water	50	EC LACOMERA-1; Air ingress
QUENCH-11	Dec 8, 2005	Water	15	EC LACOMERA-2; Boil-off, SARNET-Benchmark
QUENCH-12	Sept 27, 2006	Water	48	ISTC 1648.2; VVER
QUENCH-13	Nov 7, 2007	Water	52	AgInCd absorber, SARNET-Aerosol
QUENCH-14	July 2, 2008	Water	41	ACM series: M5 [®] cladding

Objectives of the QUENCH-12 test

- investigation of the effects of VVER materials and bundle geometry on core reflood
- comparison with the PWR bundle on the base of repeat of the test QUENCH-06 (ISP-45) scenario

Comparison of PWR and VVER test columns

J. Stuckert, FZK/IMF

Computational and Experimental Studies of LWR Fuel Element Behavior under beyond Design Basis Accidents and Reflood Conditions: Internat.Scientific and Technical Meeting, Moskva, Russia, July 27-28, 2009 6/29 HELMHOLTZ

Pretest modelling support:

1. SCDAP/SIM simulations: Paul Scherer Institute, Switzerland.

2. ICARE/CATHARE simulations: *Kurchatov Institute, Mosccow, with support from IRSN Cadarache***).**

Test performance: el. power profile in accordance to the pre-test calculations provided good reproduction of temperature history in comparison with the reference test QUENCH-06

J. Stuckert, FZK/IMF

Computational and Experimental Studies of LWR Fuel Element Behavior under beyond Design Basis Accidents and Reflood Conditions: Internat.Scientific and Technical Meeting, Moskva, Russia, July 27-28, 2009

bundle temperature at hot elevation of 950 mm

shroud temperature at hot elevation of 950 mm

HELMHOLTZ

| GEMEINSCHAFT

9/29

7500

Forschungszentrum Karlsruhe

in der Helmholtz-Gemeinschaft

J. Stuckert, FZK/IMF

QUENCH-12, quench phase: selected reading of the bundle thermocouples. Quench front propagation. Cooling of the bundle during ~350 s (similar to Q-06 and Q-14)

J. Stuckert, FZK/IMF

QUENCH-12: post-test videoscope observations of <u>breakaway</u> oxidation at different elevations of the bundle

Tmax

900 mm: circumferential and longitudinal cracks at the cladding; nodular breakaway corrosion at the shroud

Tmin

-400mm: spalled oxide scales as debris at the bundle bottom

400 mm: circumferential spalling of the oxide layer on the surface of fuel rod simulator cladding 650 mm: spalled oxide scales at shroud and cladding

Cadding

Computational and Experimental Studies of LWR Fuel Element Behavior under beyond Design Basis Accidents and Reflood Conditions: Internat.Scientific and Technical Meeting, Moskva, Russia, July 27-28, 2009

Degree of cladding oxidation is mostly lower for QUENCH-06 (Zry-4) in comparison to QUENCH-12 (E110)

J. Stuckert, FZK/IMF

Computational and Experimental Studies of LWR Fuel Element Behavior under beyond Design Basis Accidents and Reflood Conditions: Internat.Scientific and Technical Meeting, Moskva, Russia, July 27-28, 2009 16/29 HELMHOLTZ

Paks/Ungary cleaning tank incident in April 2003 with destroying of 30 VVER fuel assemblies

Cooling during normal cleaning:

- high flow rate
- closed loop

Cooling after cleaning

- low flow rate
- open loop with connection to spent fuel pool
- possibility of by-pass by bundle low head

decay heat for 30 bundle: 241 kW

J. Stuc

Q06 - bundle geometry intact-> good coolability; melt localized between pellet and ZrO₂ layer

Q12 – bundle geometry destroyed-> declined coolability; molten pools formation inside rod clusters

J. Stuckert, FZK/IMF

Computational and Experimental Studies of LWR Fuel Element Behavior under beyond Design Basis Accidents and Reflood Conditions: Internat.Scientific and Technical Meeting, Moskva, Russia, July 27-28, 2009 21/29 HELMHOLTZ

J. Stuckert, FZK/IMF

Computational and Experimental Studies of LWR Fuel Element Behavior under beyond Design Basis Accidents and Reflood Conditions: Internat.Scientific and Technical Meeting, Moskva, Russia, July 27-28, 2009 HELMHOLTZ

22/29

Comparison of hydrogen release during QUENCH-12 and QUENCH-06

J. Stuckert, FZK/IMF Computational and Experimental Studies of LWR Fuel Element Behavior under beyond Design Basis Accidents and Reflood Conditions: Internat.Scientific and Technical Meeting, Moskva, Russia, July 27-28, 2009

Comparison of hydrogen release during reflood for Q-08 test (oxidation before transient 270 μm; <u>significant melt oxidation</u>) and Q-12 test (oxidation before transient 160 μm; <u>minor melt oxidation</u>)

^F Computational and Experimental Studies of LWR Fuel Element Behavior under beyond Design Basis Accidents and Reflood Conditions: Internat.Scientific and Technical Meeting, Moskva, Russia, July 27-28, 2009 HELMHOLTZ

26/29

QUENCH-12: calculated and measured hydrogen generation /J. Birchley, PSI/

Despite the similar thermal response through almost the entire sequence, all of the calculations <u>underestimated</u> the oxidation.

Computational and Experimental Studies of LWR Fuel Element Behavior under beyond Design Basis Accidents and Reflood Conditions: Internat.Scientific and Technical Meeting, Moskva, Russia, July 27-28, 2009 27/29 HELMHOLTZ

CONCLUSIONS

• The QUENCH-12 experiment was carried out to investigate the effects of VVER materials and bundle geometry on core reflood, in comparison with the test QUENCH-06 (Zry-4-cladding) with western PWR geometry.

• During the pre-oxidation and transient phases the E110 cladding alloy is susceptible to breakaway oxidation within relative broad temperature range (1050 – 1300 K). Oxide scale of layered type showed spalling into sub-layers and loss of fragments, which were collected at spacer grids and bundle bottom.

• The breakaway oxidation was accompanied by hydriding of claddings and shroud with the result of material embrittlement, which can lead to a severe degradation of the bundle during quenching as was demonstrated in the Paks accident.

CONCLUSIONS (cont.)

• Melting point of claddings and shroud metal layer was reached at the peak temperature elevations of 950 – 1050 mm. Contrary to QUENCH-06, where melt was confined between pellets and the outer cladding oxide layer, the melt in QUENCH-12 has in places dissolved the surrounding oxide layer. As a result, non-coherent melt relocation, melt pool formation, and minor melt oxidation were observed.

• The total hydrogen production was 58 g (QUENCH-06: 36 g), 24 g of which were released during reflood (QUENCH-06: 4 g). Three possible sources of increased hydrogen production during reflood: 1) interaction of steam with new metal surfaces developed by spalling of oxide scales damaged during pre-oxidation phase because breakaway effect; 2) release of hydrogen absorbed in metal by breakaway during pre-oxidation and transient phases; 3) moderate melt oxidation released into space between rods.

• The S/R5 code adequately reproduced the QUENCH-12 thermal transient. Both the Cathcart-Pawel and Sokolov correlations underestimated the oxidation kinetics, but preliminary analysis indicates that the comparison with QUENCH-06 is consistent with the change in the bundle configuration and cladding material; in particular breakaway effect may have enhanced the oxidation.

