IAM - Computational Materials Science

Microstructure – Data Science

BildIAM-CMS

Forschung

Die Forschungsgruppe „Microstructure – Data Science“ beschäftigt sich mit der datengetriebenen Charakterisierung und Optimierung von Mikrostrukturen. Dabei liegen die Schwerpunkte der Forschungsarbeit auf der Entwicklung von Charakterisierungsmethoden für Mikrostrukturen sowie in dem Aufbau und der Anwendung von datengetriebenen Analysewerkzeugen, die das Zusammenspiel zwischen den mikrostrukturellen Eigenschaften und dem makroskopischem Materialverhalten sichtbar machen. Zur Erzeugung von digitalen Zwillingen von Mikrostrukturen und Prozessketten kommen neben großskaligen Simulationen mit der Phasenfeldmethode Generierungsalgorithmen zur Erstellung von 3D-Mikrostrukturen mit maßgeschneiderten Eigenschaften zum Einsatz. Hierzu werden auf der Grundlage oder unter Einbindung realer Mikrostrukturaufnahmen Werkzeuge entwickelt, die beispielsweise offenporige Membranstrukturen, Kornstrukturen oder Gesteinsschüttungen realitätsnah generieren können. In Kooperation mit der Forschungsgruppe „Forschungsdatenmanagement“ werden zudem Konzepte für den hochautomatisierten Umgang und die effiziente Auswertung von großen Datensätzen entwickelt und angewendet. Das übergeordnete Ziel der Forschungsfragen umfasst die Überbrückung von Längenskalen durch die Identifikation von effektiven Gesetzmäßigkeiten und die Entwicklung von Vorhersagemodellen als Unterstützung für ein beschleunigtes Materialdesign.

Bild
Bild

Publikationen


2020
A digital workflow for learning the reduced-order structure-property linkages for permeability of porous membranes.
Yabansu, Y. C.; Altschuh, P.; Hötzer, J.; Selzer, M.; Nestler, B.; Kalidindi, S. R.
2020. Acta materialia, 195, 668–680. doi:10.1016/j.actamat.2020.06.003
Influence of stress-free transformation strain on the autocatalytic growth of bainite: A multiphase-field analysis.
Schoof, E.; Kubendran Amos, P. G.; Schneider, D.; Nestler, B.
2020. Materialia, 9, Article: 100620. doi:10.1016/j.mtla.2020.100620
The non-steady-state growth of divergent pearlite in Fe–C–Mn steels: a phase-field investigation [in press].
Mushongera, L. T.; Amos, P. G. K.; Schoof, E.; Kumar, P.; Nestler, B.
2020. Journal of materials science. doi:10.1007/s10853-019-04307-9
Limitations of preserving volume in Allen-Cahn framework for microstructural analysis.
Kubendran Amos, P. G.; Schoof, E.; Santoki, J.; Schneider, D.; Nestler, B.
2020. Computational materials science, 173, Article No.109388. doi:10.1016/j.commatsci.2019.109388
Phase-field study of eutectic colony formation in NiAl-34Cr.
Kellner, M.; Hötzer, J.; Schoof, E.; Nestler, B.
2020. Acta materialia, 182, 267–277. doi:10.1016/j.actamat.2019.10.028
2019
Progress Report on Phase Separation in Polymer Solutions.
Wang, F.; Altschuh, P.; Ratke, L.; Zhang, H.; Selzer, M.; Nestler, B.
2019. Advanced materials, 1806733. doi:10.1002/adma.201806733
Multiphase-Field Modeling and Simulation of Martensitic Phase Transformation in Heterogeneous Materials.
Schoof, E.; Herrmann, C.; Schneider, D.; Hötzer, J.; Nestler, B.
2019. High Performance Computing in Science and Engineering ’18. Ed.: W. Nagel, 475–488, Springer International Publishing, Cham, CH. doi:10.1007/978-3-030-13325-2_30
Non-Arrhenius grain growth in strontium titanate: Quantification of bimodal grain growth.
Rheinheimer, W.; Schoof, E.; Selzer, M.; Nestler, B.; Hoffmann, M. J.
2019. Acta materialia, 174, 105–115. doi:10.1016/j.actamat.2019.05.040
Phase-field study on the growth of magnesium silicide occasioned by reactive diffusion on the surface of Si-foams.
Wang, F.; Altschuh, P.; Matz, A. M.; Heimann, J.; Matz, B. S.; Nestler, B.; Jost, N.
2019. Acta materialia, 170, 138–154. doi:10.1016/j.actamat.2019.03.008
On the multiphase-field modeling of martensitic phase transformation in dual-phase steel using J2-viscoplasticity.
Schoof, E.; Herrmann, C.; Streichhan, N.; Selzer, M.; Schneider, D.; Nestler, B.
2019. Modelling and simulation in materials science and engineering, 27 (2), 025010. doi:10.1088/1361-651X/aaf980
Phase-field analysis of quenching and partitioning in a polycrystalline Fe-C system under constrained-carbon equilibrium condition.
Kubendran Amos, P. G.; Schoof, E.; Streichan, N.; Schneider, D.; Nestler, B.
2019. Computational materials science, 159, 281–296. doi:10.1016/j.commatsci.2018.12.023
2018
Multiphase-field model of small strain elasto-plasticity according to the mechanical jump conditions.
Herrmann, C.; Schoof, E.; Schneider, D.; Schwab, F.; Reiter, A.; Selzer, M.; Nestler, B.
2018. Computational mechanics, 62 (6), 1399–1412. doi:10.1007/s00466-018-1570-0
Characterization of a macro porous polymer membrane at micron-scale by Confocal-Laser-Scanning Microscopy and 3D image analysis.
Ley, A.; Altschuh, P.; Thom, V.; Selzer, M.; Nestler, B.; Vana, P.
2018. Journal of membrane science, 564, 543–551. doi:10.1016/j.memsci.2018.07.062
Chemo-elastic phase-field simulation of the cooperative growth of mutually-accommodating Widmanstätten plates.
Kubendran Amos, P. G.; Schoof, E.; Schneider, D.; Nestler, B.
2018. Journal of alloys and compounds, 767, 1141–1154. doi:10.1016/j.jallcom.2018.07.138
Multiphase-field modeling of martensitic phase transformation in a dual-phase microstructure.
Schoof, E.; Schneider, D.; Streichhan, N.; Mittnacht, T.; Selzer, M.; Nestler, B.
2018. International journal of solids and structures, 134, 181–194. doi:10.1016/j.ijsolstr.2017.10.032
Correction to: Small strain multiphase-field model accounting for configurational forces and mechanical jump conditions.
Schneider, D.; Schoof, E.; Tschukin, O.; Reiter, A.; Herrmann, C.; Schwab, F.; Selzer, M.; Nestler, B.
2018. Computational mechanics, 61 (3), 297. doi:10.1007/s00466-017-1485-1
Small strain multiphase-field model accounting for configurational forces and mechanical jump conditions.
Schneider, D.; Schoof, E.; Tschukin, O.; Reiter, A.; Herrmann, C.; Schwab, F.; Selzer, M.; Nestler, B.
2018. Computational mechanics, 61 (3), 277–295. doi:10.1007/s00466-017-1458-4
2017
Simulation der martensitischen Transformation in polykristallinen Gefügen mit der Phasenfeldmethode.
Schoof, E.; Streichhan, N.; Schneider, D.; Selzer, M.; Nestler, B.
2017. Forschung aktuell, 13–16
On stress and driving force calculation within multiphase-field models : Applications to martensitic phase transformation in multigrain systems.
Schneider, D.; Schoof, E.; Schwab, F.; Herrmann, C.; Selzer, M.; Nestler, B.
2017. 4th GAMM Workshop on Phase Field Modeling, RWTH Aachen University, Germany, 2nd - 3rd February 2017
Data science approaches for microstructure quantification and feature identification in porous membranes.
Altschuh, P.; Yabansu, Y. C.; Hötzer, J.; Selzer, M.; Nestler, B.; Kalidindi, S. R.
2017. Journal of membrane science, 540, 88–97. doi:10.1016/j.memsci.2017.06.020
On the stress calculation within phase-field approaches : a model for finite deformations.
Schneider, D.; Schwab, F.; Schoof, E.; Reiter, A.; Herrmann, C.; Selzer, M.; Böhlke, T.; Nestler, B.
2017. Computational mechanics, 60 (2), 203–217. doi:10.1007/s00466-017-1401-8
2016
On stress and driving force calculation within phase-field models : Applications to martensitic phase transformation and crack propagation in multiphase systems.
Schneider, D.; Schoof, E.; Tschukin, T.; Schwab, F.; Selzer, M.; Nestler, B.
2016. Interdisziplinäres Seminar Mathematik und Mechanik, Kaiserslautern, Deutschland, 2016
Phase-field modeling of crack propagation in multiphase systems.
Schneider, D.; Schoof, E.; Schwab, F.; Selzer, M.; Nestler, B.
2016. EMMC15 : 15th European Mechanics of Materials Conference, Brussel, Belgium, 7th - 9th September 2016
Phase-field modeling of crack propagation in multiphase systems.
Schneider, D.; Schoof, E.; Schwab, F.; Selzer, M.; Nestler, B.
2016. ECCOMAS 2016 : European Congress on Computational Methods in Applied Sciences and Engineering, Crete Island, Greece, 5th - 10th June 2016
Easto-plastic phase-field model accounting for mechanical jump conditions during solid-state phase transformations.
Schneider, D.; Schoof, E.; Reiter, A.; Selzer, M.; Nestler. B.
2016. The 22nd International Symposium on Plasticity and Its Current Applications, Sheraton Kona Resort & Spa Keauhou Bay, Hawaii, 3rd - 9th January 2016
Phase-field modeling of crack propagation in multiphase Systems.
Schneider, D.; Schoof, E.; Huang, Y.; Selzer, M.; Nestler, B.
2016. Computer methods in applied mechanics and engineering, 312, 186–195. doi:10.1016/j.cma.2016.04.009
Modeling of crack propagation on a mesoscopic length scale.
Nestler, B.; Schneider, D. M.; Schoof, E.; Huang, Y.; Selzer, M.
2016. GAMM-Mitteilungen, 39 (1), 78–91. doi:10.1002/gamm.201610005
2015
Elastoplastic phase-field model accounting for mechanical jump conditions during solid-state phase transformations.
Schneider, D.; Tschukin, O.; Schoof, E.; Choudhury, A.; Selzer, M.; Nestler, B.
2015. PTM 2015 : International Conference on Solid-Solid Phase Transformations in Inorganic Materials, Westin Whistler Resort & Spa, Canada, 28th June - 3rd July 2015
Elastoplastic phase-field model accounting for mechanical jump conditions during solid-state phase transformations.
Schneider, D.; Tschukin, O.; Schoof, E.; Choudhury, A.; Selzer, M.; Nestler, B.
2015. ICM12 : 12th International Conference on the Mechanical Behavior of Materials, Karlsruhe, Germany, 10th - 14th May 2015
2014
Modelling of transient heat conduction with diffuse interface methods.
Ettrich, J.; Choudhury, A.; Tschukin, O.; Schoof, E.; August, A.; Nestler, B.
2014. Modelling and simulation in materials science and engineering, 22 (8), Art.Nr. 085006/1–29. doi:10.1088/0965-0393/22/8/085006
2012
Computational analysis of bio inspired thermal absorber systems made of textile fabrics.
Schoof, E.; Römmelt, M.; Selzer, M.; August, A.; Nestler, B.; Kneer, A.; Stegmaier, T.
2012. International School and Conference on Biological Materials Science, Potsdam, March 20-23, 2012