Home | english  | Impressum | Datenschutz | Sitemap | KIT
Johannes Hoetzer

Dr.-Ing. Johannes Hötzer

Raum: 316
Tel.: +49 721 608-45315
Fax: +49 721 608-44364
johannes hoetzerXji0∂kit edu

IAM-CMS, Gruppenleitung:
High Performance Materials Simulation and Data Science

Institut für Angewandte Materialien
Computational Materials Science (IAM-CMS)
MZE - Geb. 30.48
Straße am Forum 7
76131 Karlsruhe

IDM - Phase-Field Simulations



Forschung

Large Scale and Massiv Parallel Phase-field
Simulations of ternary eutectics

Massive parallel simulations Hoetzer_Research_Image2Hoetzer_Research_Image1

  • Message Passing Interface (MPI)
  • Up to 84700 CPUs
  • Vectorization (SIMD)
  • Domain decompostion
  • High Performance Computing
  • SuperMUC, Hornet/Hazel Hen, ForHLR

 

 

Large domainsHoetzer_Research_Image3

  • Up to 2420x2420x1700 voxel cells
  • Optimized output formats
  • (LROP/Mesh)

 

 

 

 

 

 

 

 

 

 

 

Preprocessing

  • Generation of inital fillings (Foams, Packings)
  • Converter (EBS, STL,..)

 

Hoetzer_Research_Image4Hoetzer_Research_Image5

 

Postprocessing

  • VisualisationHoetzer_Research_Image6
  • converter (EBSD, Vtk, CAD,..)
  • analysis (volume, velocity,...)
  • manipulation (domain size,...)
  • visualization (stl, wulffplots, infileeditor,...)
  • thermodynamics (Calphad to Infile, phase diagram)
  • fillings (voronoi, packaging,...)
  • graph analysis

 

Hoetzer_Research_Image7Hoetzer_Research_Image8

 

 

 

 

 

Publikationsliste


Phase-field study of eutectic colony formation in NiAl-34Cr.
Kellner, M.; Hötzer, J.; Schoof, E.; Nestler, B.
2020. Acta materialia, 182, 267–277. doi:10.1016/j.actamat.2019.10.028
Theoretical and numerical investigations of rod growth of an Ni–Zr eutectic alloy.
Enugala, S. N.; Kellner, M.; Kobold, R.; Hötzer, J.; Kolbe, M.; Nestler, B.; Herlach, D.
2019. Journal of materials science, 54 (19), 12605–12622. doi:10.1007/s10853-019-03802-3
Investigation of the microstructure adjustment by velocity variations during the directional solidification of Al-Ag-Cu with the phase-field method.
Hötzer, J.; Kellner, M.; Kunz, W.; Nestler, B.
2019. Joint 5th International Conference on Advances in Solidification Processes (ICASP-5) & 5th International Symposium on Cutting Edge of Computer Simulation of Solidification, Casting and Refining (CSSCR-5) 17–21 June 2019, Salzburg, Austria, Article No.012007, Institute of Physics Publishing. doi:10.1088/1757-899X/529/1/012007
Phase-field study of grain growth in porous polycrystals.
Rehn, V.; Hötzer, J.; Rheinheimer, W.; Seiz, M.; Serr, C.; Nestler, B.
2019. Acta materialia, 174, 439–449. doi:10.1016/j.actamat.2019.05.059
Multiphase-Field Modeling and Simulation of Martensitic Phase Transformation in Heterogeneous Materials.
Schoof, E.; Herrmann, C.; Schneider, D.; Hötzer, J.; Nestler, B.
2019. High Performance Computing in Science and Engineering ’18. Ed.: W. Nagel, 475–488, Springer International Publishing, Cham, CH. doi:10.1007/978-3-030-13325-2_30
A scalable and extensible checkpointing scheme for massively parallel simulations.
Kohl, N.; Hötzer, J.; Schornbaum, F.; Bauer, M.; Godenschwager, C.; Köstler, H.; Nestler, B.; Rüde, U.
2019. The international journal of high performance computing applications, 33 (4), 571–589. doi:10.1177/1094342018767736
Phase-field simulation of solid state sintering.
Hötzer, J.; Seiz, M.; Kellner, M.; Rheinheimer, W.; Nestler, B.
2019. Acta materialia, 164, 184–195. doi:10.1016/j.actamat.2018.10.021
Graph-based investigation of three-dimensional microstructure rearrangement during ternary eutectic directional solidification of Al-Ag-Cu.
Steinmetz, P.; Hötzer, J.; Dennstedt, A.; Serr, C.; Nestler, B.; Genau, A.
2018. Journal of crystal growth, 498, 230–243. doi:10.1016/j.jcrysgro.2018.06.028
Quantitative Comparison of Ternary Eutectic Phase-Field Simulations with Analytical 3D Jackson–Hunt Approaches.
Steinmetz, P.; Kellner, M.; Hötzer, J.; Nestler, B.
2018. Metallurgical and materials transactions / B, 49 (1), 213–224. doi:10.1007/s11663-017-1142-2
Phase-field study of dynamic velocity variations during directional solidification of eutectic NiAl-34Cr.
Kellner, M.; Kunz, W.; Steinmetz, P.; Hötzer, J.; Nestler, B.
2018. Computational materials science, 145, 291–305. doi:10.1016/j.commatsci.2017.12.053
Perspectives on material modelling: Porous and particle-based microstructures.
Nestler, B.; August, A.; Selzer, M.; Hötzer, J.; Kellner, M.; Prajapati, N.; Rehn, V.; Seiz, M.
2018. Ceramic applications, 6 (1), 73–77
Massively Parallel Stencil Code Solver with Autonomous Adaptive Block Distribution.
Berghoff, M.; Kondov, I.; Hötzer, J.
2018. IEEE transactions on parallel and distributed systems, 29 (10), 2282–2296. doi:10.1109/TPDS.2018.2819672
The parallel multi-physics phase-field framework PACE3D.
Hötzer, J.; Reiter, A.; Hierl, H.; Steinmetz, P.; Selzer, M.; Nestler, B.
2018. Journal of computational science, 26, 1–12. doi:10.1016/j.jocs.2018.02.011
Study of pattern selection in 3D phase-field simulations during the directional solidification of ternary eutectic Al-Ag-Cu.
Steinmetz, P.; Hötzer, J.; Kellner, M.; Genau, A.; Nestler, B.
2018. Computational materials science, 148, 131–140. doi:10.1016/j.commatsci.2018.02.040
Large-Scale and Massively Parallel Phase-Field Simulations of Pattern Formation in Ternary Eutectic Alloys.
Hötzer, J.; Bauer, M.; Jainta, M.; Steinmetz, P.; Berghoff, M.; Schornbaum, F.; Godenschwager, C.; Köstler, H.; Rüde, U.; Nestler, B.
2015. SC15, Austin, TX, November 16 - 19 in Austin, Texas, USA
Application of Large-Scale Phase-Field Simulations in the Context of High-Performance Computing.
Hötzer, J.; Jainta, M.; Ben Said, M.; Steinmetz, P.; Berghoff, M.; Nestler, B.
2016. High Performance Computing in Science and Engineering ’15: Transactions of the High Performance Computing Center, Stuttgart (HLRS) 2015. Ed.: W. Nagel, 659–674, Springer International Publishing, Berlin. doi:10.1007/978-3-319-24633-8_42
Influence of growth velocity variations on the pattern formation during the directional solidification of ternary eutectic Al-Ag-Cu.
Hötzer, J.; Steinmetz, P.; Dennstedt, A.; Genau, A.; Kellner, M.; Sargin, I.; Nestler, B.
2017. Acta materialia, 136, 335–346. doi:10.1016/j.actamat.2017.07.007
Phase-field study on the effects of process and material parameters on the tilt angle during directional solidification of ternary eutectics.
Dargahi Noubary, K.; Kellner, M.; Steinmetz, P.; Hötzer, J.; Nestler, B.
2017. Computational materials science, 138, 403–411. doi:10.1016/j.commatsci.2017.07.006
Data science approaches for microstructure quantification and feature identification in porous membranes.
Altschuh, P.; Yabansu, Y. C.; Hötzer, J.; Selzer, M.; Nestler, B.; Kalidindi, S. R.
2017. Journal of membrane science, 540, 88–97. doi:10.1016/j.memsci.2017.06.020
Packungsalgorithmen zur Generierung granularer Partikelstrukturen für die Simulation von Sinterprozessen.
Hötzer, J.; Rölle, M.; Nestler, B.
2014. Forschung aktuell, 2014, 57–60
Die Vielfalt der Musterbildung in Metallen - Großskalige Phasenfeldsimulationen zur gerichteten Erstarrung ternärer eutektischer Systeme.
Hötzer, J.; Jainta, M.; Steinmetz, P.; Dennstedt, A.; Nestler, B.
2015. Horizonte, 45, 10–13
Study of complex microstructure evolution in ternary eutectic alloys with massive parallel large-scale phasefield simulations.
Hötzer, J.; Jainta, M.; Bauer, M.; Steinmetz, P.; Kellner, M.; Köstler, H.; Rüde, U.; Nestler, B.
2016. High performance computing in science and engineering, Garching/Munich 2016. Ed.: S. Wagner, 194–195, Bayerische Akademie der Wissenschaften, München
Phase-field simulation of the microstructure evolution in the eutectic NiAl-34Cr system.
Kellner, M.; Sprenger, I.; Steinmetz, P.; Hötzer, J.; Nestler, B.; Heilmaier, M.
2017. Computational materials science, 128, 379–387. doi:10.1016/j.commatsci.2016.11.049
Large scale phase-field simulations of directional ternary eutectic solidification.
Hötzer, J.; Jainta, M.; Steinmetz, P.; Nestler, B.; Dennstedt, A.; Genau, A.; Bauer, M.; Köstler, H.; Rüde, U.
2015. Acta materialia, 93, 194–204. doi:10.1016/j.actamat.2015.03.051
Analytics for microstructure datasets produced by phase-field simulations.
Steinmetz, P.; Yabansu, Y. C.; Hötzer, J.; Jainta, M.; Nestler, B.; Kalidindi, S. R.
2016. Acta materialia, 103, 192–203. doi:10.1016/j.actamat.2015.09.047
Calibration of a multi-phase field model with quantitative angle measurement.
Hötzer, J.; Tschukin, O.; Ben Said, M.; Berghoff, M.; Jainta, M.; Barthelemy, G.; Smorchkov, N.; Schneider, D.; Selzer, M.; Nestler, B.
2016. Journal of materials science, 51 (4), 1788–1797. doi:10.1007/s10853-015-9542-7
Large-scale phase-field simulations of ternary eutectic microstructure evolution.
Steinmetz, P.; Hötzer, J.; Kellner, M.; Dennstedt, A.; Nestler, B.
2016. Computational materials science, 117, 205–214. doi:10.1016/j.commatsci.2016.02.001
Phase-field simulations of spiral growth during directional ternary eutectic solidification.
Hötzer, J.; Steinmetz, P.; Jainta, M.; Schulz, S.; Kellner, M.; Nestler, B.; Genau, A.; Dennstedt, A.; Bauer, M.; Köstler, H.; Rüde, U.
2016. Acta materialia, 106, 249–259. doi:10.1016/j.actamat.2015.12.052
Extraction of reduced-order process-structure linkages from phase-field simulations.
Yabansu, Y. C.; Steinmetz, P.; Hötzer, J.; Kalidindi, S. R.; Nestler, B.
2017. Acta materialia, 124, 182–194. doi:10.1016/j.actamat.2016.10.071
Compound Droplets on Fibers.
Weyer, F.; Ben Said, M.; Hötzer, J.; Berghoff, M.; Dreesen, L.; Nestler, B.; Vandewalle, N.
2015. Langmuir, 31 (28), 7799–7805. doi:10.1021/acs.langmuir.5b01391
Applications of the phase-field method for the solidification of microstructures in multi-component systems.
Hötzer, J.; Kellner, M.; Steinmetz, P.; Nestler, B.
2016. Journal of the Indian Institute of Science, 96 (3), 235–256
Massively parallel phase-field simulations for ternary eutectic directional solidification.
Bauer, M.; Hötzer, J.; Jainta, M.; Steinmetz, P.; Berghoff, M.; Schornbaum, F.; Godenschwager, C.; Köstler, H.; Nestler, B.; Rüde, U.
2015. International Conference for High Performance Computing, Networking, Storage and Analysis, SC 2015; Austin; United States; 15 November 2015 through 20 November 2015, Art.Nr.: 8, ACM, New York (NY). doi:10.1145/2807591.2807662
Phase-field study of the pattern formation in Al-Ag-Cu under the influence of the melt concentration.
Steinmetz, P.; Kellner, M.; Hötzer, J.; Dennstedt, A.; Nestler, B.
2016. Computational Materials Science, 121, 6–13. doi:10.1016/j.commatsci.2016.04.025
Phase-field study of pore-grain boundary interaction.
Hötzer, J.; Rehn, V.; Rheinheimer, W.; Hoffmann, M. J.; Nestler, B.
2016. Journal of the Ceramic Society of Japan, 124 (4), 329–339. doi:10.2109/jcersj2.15266
Metallic foam structures, dendrites and implementation optimizations for phase-field modeling.
Vondrous, A.; Nestler, B.; August, A.; Wesner, E.; Choudhury, A.; Hötzer, J.
2011. High Performance Computing in Science and Engineering, Stuttgart, October 4-5, 2011
Dynamische Lastverteilung auf einem HPC Framework mit nachrichtenbasierter Kommunikation.
Heisler, C.; Hötzer, J.; Maier, M.; Reiter, A.; Selzer, M.; Nestler, B.
2015. Forschung aktuell, 2015, 16–18
Phase-field simulations of large-scale microstructures by integrated parallel algorithms.
Hötzer, J.; Jainta, M.; Vondrous, A.; Ettrich, J.; August, A.; Stubenvoll, D.; Reichardt, M.; Selzer, M.; Nestler, B.
2015. High Performance Computing in Science and Engineering ’14 : Transactions of the High Performance Computing Center, Stuttgart (HLRS), 2014. Hrsg.: W. E. Nagel, 629–644, Springer, Cham. doi:10.1007/978-3-319-10810-0_41
Parallel computing for phase-field models.
Vondrous, A.; Selzer, M.; Hötzer, J.; Nestler, B.
2014. The international journal of high performance computing applications, 28 (1), 61–72. doi:10.1177/1094342013490972
Metallic foam structures, dendrites and implementation optimizations for phase-field modeling.
Vondrous, A.; Nestler, B.; August, A.; Wesner, E.; Choudhury, A.; Hötzer, J.
2012. High performance computing in science and engineering ’ 11 : transactions of the High Performance Computing Center, Stuttgart (HLRS) 2011. Ed.: W.E. Nagel, 595–606, Springer, Berlin. doi:10.1007/978-3-642-23869-7_43
Veröffentlichungen
Titel Autor Quelle

Computational Materials Science, 2015
 

Acta Materialia

Journal of Materials Science, 2015

DOI: 10.1007/s10853-015-9542-7

Forschungsbericht 2016

In The International Conference for High Performance Computing, Networking, Storage, and Analysis (SC15)

Langmuir, 2015

High Performance Computing in Science and Engineering ’15: Transactions of the High Performance Computing Center, Stuttgart (HLRS) 2015. Springer

Ingenieurspiegel

Horizonte, 2015

Acta Materialia (submitted)

Acta Materialia, 93(0):194 – 204, 2015. ISSN 1359-6454

Forschung aktuell 2015

Forschung aktuell 2014

Int. J. High Perform. Comput. Appl., 28(1):61–72, February 2014. ISSN 1094-3420.doi: 10.1177/1094342013490972

High Performance Computing in Science and Engineering ’14: Transactions of the High Performance Computing Center, Stuttgart (HLRS) 2014

High Performance Computing in Science and Engineering ’11: Transactions of the High Performance Computing Center, Stuttgart (HLRS) 2011. Springer, 2015 edition, 2011. ISBN 978-3-642-23869-7

International Journal of High
Performance Computing Applications, 1 (2013), 12



Konferenzen
Titel Autor Konferenz

SuperComputing (SC15)

SIAM Conference on Computational Science and Engineering (CES 2015)

8th International Conference on High Temperature Capillarity (HTC-2015)

HLRS Results and Review Workshop 2015

HLRS Results and Review Workshop 2014

CIMTEC 2014

SimGPU 2013

Junior Euromat 2012