Type of file: pdf Size of file: 0 KB Title of file for HTML: Supplementary Information Description: Supplementary Figures and Supplementary Tables

Supplementary Figure 1. Megascopic synchrotron diffraction pattern of Na₂VTi(PO₄)₃@C.

Supplementary Figure 2. HAADF-STEM images and mapping of Na₂VTi(PO₄)₃@C (Scale bar of HAADF and element mapping are 500 nm and 1 um, respectively).

Supplementary Figure 3. Raman spectrum of Na₂VTi(PO₄)₃@C.

Supplementary Figure 4. The cycle performance and coulombic efficiency for 30

cycles.

Supplementary Figure 5. Galvanostatic charge-discharge profiles at various current rates.

Supplementary Figure 6. The cycle performance and coulombic efficiency of $Na_2VTi(PO_4)_3@C$ -based symmetrical full cell for 30 cycles at a curve rate of 1C between 0.5 and 2.0V.

Supplementary Figure 7. Cyclic voltammograms at a scan rate of 0.1 mV s^{-1} between 0.5 and 2.0 V of the symmetric cell.

Supplementary Figure 8. Structure evolution of $Na_xVTi(PO_4)_3$ upon Na extraction/insertion: Rietveld refinement of the pristine $Na_2VTi(PO_4)_3$ (a), the $Na_2VTi(PO_4)_3$ electrode charge to 4.5 V (b) and the $Na_2VTi(PO_4)_3$ electrode discharge to 1.5 V (c). Black circles and red and blue lines represent the observed, calculated, and difference patterns, respectively. The green tick marks correspond to the Bragg reflections.

Supplementary Figure 9. Enlarged *In situ* synchrotron XRD patterns. (a) the enlarged electrochemical *in situ* synchrotron XRD patterns collected during the Na₂VTi(PO₄)₃ electrodes charge from 2.3 V to 4.5 V and (b) the enlarged electrochemical *in situ* synchrotron XRD patterns collected during the Na₂VTi(PO₄)₃ electrodes discharge from 3.3 V to 1.5 V.

	Wyckoff position	x	у	Z	Uiso	Occ
Na1	6b	0	0	0	0.0725(2)	1.028(6)
Na2	18e	0.6408(8)	0	0.25	0.042(3)	0.317(3)
Ti	12c	0	0	0.14642(4)	0.0028(2)	0.5
V	12c	0	0	0.14642(4)	0.0028(2)	0.5
Р	18e	0.28765(1)	0	0.25	0.0159(4)	1
01	36f	0.1727(2)	- 0.0274(3)	0.19153(8)	0.0194(7)	1
02	36f	0.1883(2)	0.1622(2)	0.08908(1)	0.0156(6)	1
	Space C	Group: R-3c, a	=8.59922(1)	, c=21.8181(4),	$R_{wp}=4.39, R_p=3.2$	22

Supplementary Table 1. The atomic positions of Na₂VTi(PO₄)₃@C nanocomposite upon Rietveld refinement results.

Cathode Anode	Capacity	Voltage (V)	Capacity retention	Rate performance	Ref.
	(mA h g ⁻¹)				
Na ₃ V ₂ (PO ₄) ₃ NaTi ₂ (PO ₄) ₃	110 mA h g ⁻¹ under current	1.2	80% after 1000 cycles	90 mA h g ⁻¹ under current	13
	density of 13.3 mA g ⁻¹			density of 6.65A g ⁻¹	
Na ₃ V ₂ (PO ₄) ₃ Sb/C	500 mA h g ⁻¹ under current	2.1	70% after 100 cycles	-	19
	density of 0.1 A g^{-1}				
Na ₃ V ₂ (PO ₄) ₃ CoS	400 mA h g ⁻¹ under current	2.2	68% after 100 cycles	-	20
	density of 0.5 A g^{-1}				
Na _{7/9} Cu _{2/9} Fe _{1/9} Mn _{2/3} O ₂ hard carbon	350 mA h g ⁻¹ under current	2.5	81% after 50 cycles	-	21
	density of 20 mA g ⁻¹				
Na ₃ Ni ₂ SbO ₆ Sb/C	110 mA h g ⁻¹ under current	3.0	68% after 50 cycles	-	22
	density of 20 mA g ⁻¹				
NaNi _{0.5} Mn _{0.5} O ₂ hard carbon	250 mA h g ⁻¹ under current	3.0	44% after 80 cycles	-	34
	density of 25 mA g ⁻¹				
$Na_{3}V_{2}(PO_{4})_{3}\parallel Na_{0.66}[Li_{0.22}Ti_{0.78}]O_{2}$	95 mA h g ⁻¹ under current	2.6	67% after 20 cycles	75 mA h g ⁻¹ under current	35
	density of 10.6 mA g^{-1}			density of 212 mA g^{-1}	

Supplementary Table 2. Comparison of sodium storage performance in the state-of-the-art fu	ull Na	√a-ion ł	batteries
---	--------	----------	-----------

Symmetric Na _{0.6} [Cr _{0.6} Ti _{0.4}]O ₂	80 mA h g ⁻¹ under current	2.5	78% after 100 cycles	55 mA h g^{-1} under current	16
	density of 76 mA g ⁻¹			density of 912 mA g^{-1}	
Symmetric Na _{0.8} Ni _{0.4} Ti _{0.6} O ₂	80 mA h g ⁻¹ under current	2.8	70% after 150 cycles	53 mA h g ⁻¹ under current	17
	density of 20 mA g ⁻¹			density of 100 mA g ⁻¹	
Symmetric Na _{2.55} V ₆ O ₁₆ ·0.6H ₂ O	130 mA h g ⁻¹ at 50 mA g ⁻¹	1.5	85% after 100 cycles	-	30
Symmetric Na _{0.66} Ni _{0.17} Co _{0.17} Ti _{0.66} O ₂	100 mA h g ⁻¹ under current	3.1	76% after 1000 cycles	40 mA h g ⁻¹ under current	31
	density of 20 mA g ⁻¹			density of 1.5 A g ⁻¹	
Symmetric NaNi _{0.33} Li _{0.11} Ti _{0.56} O ₂	80 mA h g ⁻¹ under current	2.3	63% after 100 cycles	40 mA h g ⁻¹ under current	32
	density of 20 mA g ⁻¹			density of 100 mA g ⁻¹	
Symmetric Na ₃ V ₂ (PO ₄) ₃	100 mA h g ⁻¹ under current	1.7	75% after 200 cycles	40 mA h g ⁻¹ under current	18
	density of 58.8 mA g ⁻¹			density of 1.176 A g ⁻¹	
Symmetric Na ₃ V ₂ (PO ₄) ₃	100 mA h g ⁻¹ under current	1.7	71% after 280 cycles	30 mA h g ⁻¹ under current	33
	density of 23 mA g ⁻¹			density of 1.176 A g ⁻¹	
Symmetric Na ₃ Ti ₂ (PO ₄) ₃	-	1.7	-	-	15
Symmetric Na ₂ VTi(PO ₄) ₃	80 mA h g ⁻¹ under current	1.2	74% after 10000 cycles	49 mA h g ⁻¹ under current	This
	density of 125 mA g^{-1}			density of 2.5 Ag^{-1}	work

Supplementary Table 3 Structural parameters of the pristine Na ₂ VTi(PO ₄) ₃ @C
electrodes which were obtained from in situ synchrotron X-ray diffraction Rietveld

analysis.								
S.G. <i>R</i> -3 <i>c a</i> =8.6170(3) Å, <i>c</i> =21.8127(8) Å								
	Wyckoff position	х	У	Z	Uiso	Occ		
Na1	6b	0	0	0	0.083(4)	1		
Na2	18e	0.6460(2)	0	0.25	0.069(1)	0.353(1)		
Ti	12c	0	0	0.14682(1)	0.0033(8)	0.5		
V	12c	0	0	0.14682(1)	0.0033(8)	0.5		
Р	18e	0.2891(4)	0	0.25	0.0332(2)	1		
01	36f	0.1759(6)	- 0.0215(7)	0.1919(2)	0.038(2)	1		
O2	36f	0.1854(5)	0.1588(5)	0.0882(2)	0.0166(2)	1		
$R_{wp}=0.78, R_p=0.6$								

S.G. <i>R</i> -3 <i>c</i> a=8.4650(2) Å, c=21.6886(7) Å								
	Wyckoff position	х	у	Z	Uiso	Occ		
Na1	6b	0	0	0	0.034(3)	1.008(1)		
Na2	18e	0.623(2)	0	0.25	0.01	0.023(4)		
Ti	12c	0	0	0.14504(1)	0.0058(7)	0.5		
V	12c	0	0	0.14504(1)	0.0058(7)	0.5		
Р	18e	0.2860(3)	0	0.25	0.0153(1)	1		
01	36f	0.1707(5)	- 0.0262(6)	0.1904(2)	0.0223(2)	1		
O2	36f	0.1875(5)	0.1589(5)	0.0893(3)	0.0083(1)	1		
R _{wp} =0.8, R _p =0.62								

Supplementary Table 4 Structural parameters of the Na₂VTi(PO₄)₃@C electrodes charge to 4.5V which were obtained from *in situ* synchrotron X-ray diffraction Rietveld analysis.

S.G. <i>R</i> -3 <i>c</i> a=8.8770(3) Å, c=21.8152(1) Å								
	Wyckoff position	х	у	Z	Uiso	Occ		
Na1	<i>6b</i>	0	0	0	0.049(9)	0.82(3)		
Na2	18e	0.6428(1)	0	0.25	0.018(5)	0.838(1)		
Ti	12c	0	0	0.14752(1)	0.0060(1)	0.5		
V	12c	0	0	0.14752(1)	0.0060(1)	0.5		
Р	18e	0.2921(6)	0	0.25	0.0239(2)	1		
01	36f	0.1906(9)	- 0.0298(9)	0.1900(3)	0.008(3)	1		
O2	36f	0.1965(1)	0.1678(1)	0.0947(5)	0.015(2)	1		
$R_{wp}=0.89, R_p=0.68$								

Supplementary Table 5 Structural parameters of the Na₂VTi(PO₄)₃@C electrodes discharge to 1.5V which were obtained from *in situ* synchrotron X-ray diffraction Rietveld analysis.