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ABSTRACT

In the REBEKA program a fuel rod bundle is simulated by electrically
“heated fuel rod simulators. in a 5x5 array of full length. One part
~of this program is the investigation of the influence of a control
rod guide tube (CRGT) on the cladding deformation during the refill-
and reflood-phases of a loss of coolant accident {LOCA).

.an the adjacent claddings. In contrast to the general expectation
‘the Zircaloy tubes show a relatively high circumferential burst
Strain. A mechanical and thermohydraulic interaction with the cold
CRGT resulted in a decrease of the clad heating rate on the hot
"Side and a reduction of the azimuthal cladding temperature differ-
fgnces. Both effects lead to higher burst strains.
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The ballooning problem of Zircaloy claddings during a loss-of-coolant
accident and the REBEKA-program is described in /1/. One part of this
program is the investigation of the influence of control rod guide
thimbles on cladding deformation during the refill- and reflood-
phases of a LOCA.

EXPERIMENT

The bundle consists of electrically heated fuel rod simulators in a
5x5 array with true KWU-PWR-dimensions and spacer grids. The cold
guide tube is located in the centre of the bundle. The outer ring of
16 fuel rod simulators does not deform during the test and serves tg
simulate the thermal surroundings. Fig. 1 shows the bundle layout.

TEST PROCEDURE

Fig. 2 shows the test data and the test procedure. The initial con-
ditions for the test were the following: Power is off, theocladding
temperatures at axial midplane of the bundle are about 550 “C, the
internal rod pressure has reached a value of 70 bar (7 MPa) and the
pressure supply valve is closed. Test starts with a heat-up-ramp of
7 K/s, corresponding to a specific,rod power of 20 W/cm. During heat-
up a heat transfer of about 30 W/m“K is realised by a steam flow
downgards through the test rig. At a cladding temperature of about
780 “C flooding water enters the test bundle with a c81d flooding
rate of 3 cm/s with a water inlet temperature of 130 "C. The system
pressure is 4 bar. During the Uhole test the temperature of the
control rod guide tube is 130 "C constant over the axial length of
the tube because the flooding water is introduced at the top of the
test rig into the guide tube and flows downwards through it to the
lower plenum of the test rig.

DEFORMATION MECHANISM

It has been found in previous tests, that the burst strain depends e
on the load, heating rate and the azimuthal temperature distribution
during ballooning. It was found that the azimuthal temperature dis~
tribution is one of the most important factors /2/. Small azimuthal
differences in temperature result in high circumferential burst
strains, large azimuthal differences in temperature result in Tow
burst strains (Fig.3).

It has been observed that Zircaloy claddings deformed under azi-
muthal temperature differences result in a tube bending with the
consequence that the gap between pellets and cladding is closed on
the hot side and opened at the opposite cold side.

In REBEKA-test 4 a cold control rod guide tube (CRGT) generated a
pronounced azimuthal temperature difference on the adjacent cladd-
ings and was therefore expected to limit the circumferential burst
strain /3/.

Fig. 4 represents the circumferential strains of the 8 Zircaloy A e
claddings and the coolant channel blockage versus the heated Teng ks
of the fuel rod simulators. &

In contrast to the general expectation the Zircaloy tubes shog a
relatively high deformation, not smaller than in bundle test hout
performed under identical thermohydraulic conditions, but wit

a cold control rod guide thimble.

: e
Fig. 5 shows temperature histories at the axial midplane of ;?de

guide tube, of the Zircaloy cladding at the inner and outet
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and of the Inconel cladded fuel rod simulator, as well as the
jnternal pressure history. Two things can be seen from the figure:

- the development of the azimuthal temperature difference starts
during heat-up. )

- plastic deformation starts also during heat-up indicated by the
decrease of the internal pressure before start of flooding.

The consequence is the bending of the Zircaloy claddings with
a non symmetric balloning.

Fig. 6.1 represents schematically a guide tube, a Zircaloy cladded
rod and a rod of the next row. The cold side of the Zircaloy
cladding starts to balloon non symmetrically as predicted towards
the cold guide tube (Fig.6.2). If the distance to the cold CRGT
would be Targe enough, the deformation would continue to go into
the same direction and the Zircaloy cladding would have burst as
predicted with a small circumferential strain.

|

| However at a strain of 19 % the Zircaloy cladding touches the

’ cold CRGT and as a consequence (Fig.6.3) the cladding is forced
to balloon on its opposite hotter side. The hot gap opens and
decreases the gap conductance which results in a decrease aof the
clad heating rate on the hot side and a reduction of the azimuthal
temperature difference during ballooning. Both effects i,e. the
lower heating rate and the smaller azimuthal temperatuyre differ-
ence lead to higher burst strains.

- A third information can be taken from Fig.5. At start of flooding
. the thermocouple (TC) which faces the outher cooling channels
i compared with the TC facing the CRGT shows a higher decrease in
1‘ cladding temperature. This effect can be found on all Zircaloy
.§w©1addings. This means that at start of flooding there was a higher
.~ heat transfer in the outer cooling channels than in the central
~cooling channels e.g. as a consequence of a higher blockage of
~ the central cooling channels and/or a reduction of the quantity
‘of water droplets in the two phase flow mixture resulting from
1deentrainement by the cold CRGT in the central cooling channels.

~ This thermohydraulic phenomenon leads also to a lower heating
~rate at the hot side and to smaller azimuthal cladding temper-
~ature differences and therefore to higher burst strains. Cross
~sections through the bundle (Fig.7) show that direct adjacent

~ lircaloy claddings touch the control rod guide tube in the planes
_E-:: burst with a wall thickness nearly of the initial size in this
B> gion.

VU‘

X F‘Q: 8 gives information about the burst strain, the burst

- Position, the time at burst and the quench time at axial midplane.

g detajled evaluation of bundle test 3 and 4 gave first hints on

QuEOSSib]e interaction between neighboring rods with the conse-

3ud2Ce of a failure propagation. It could be shown that a local
1n1t$n increase of the temperature of the Zircaloy cladding was
fa ated by the burst of the neighboring rod as a consequence
the S§as Jet after burst (Fig.9). At burst of the neighboring rod
Hftedtuatmr_: was the following: a Zircaloy cladding which had

- Deljag from its heat source, a temperature difference between
Phase : and 21rga]oy cladding of about 100 K (Fig. 10) and a two
130W }Ow cooling with a heat transfer coefficient of about
g’ﬂdiem - An increase of the cladding temperature of 25 K with a
Wag o Nt of 40 K/s over a time period of 8 seconds (see Fig.9)
frop osured. This is the result of the reduction of the heat flux

the hoce cladding to the two phase cooling due to the mixing with

Wtupg, elium gas and the resulting higher local fluid temper-
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It has to be analysed in more detail whether the relatively large
circumferential burst strain of 79 % is the result of this temper-
ature increase.

CONCULSION

A coid control rod guide thimble in a bundle produced relatively
high azimuthal differences in temperature, but it did not restrict
the circumferential burst strains in the predicted way under the
conditions simulated in REBEKA test 4 because of mechanical and
thermohydraulic interactions.
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