

Nuclear accident research at KIT: overview of bundle tests

Presented by Juri Stuckert

20th CEG-SAM Meeting, Moscow, ISTC, 2011

Institute for Applied Materials, IAM-WPT; Program NUKLEAR

www.kit.edu

Tensile tests

INSTRON testing machine

Three types of cladding failure

Ruptures near to burst opening due to hydrogen embrittlement (7 from 9 internal rods)

Rupture across the burst opening middle due to stress concentration (external rod) Rupture near end plugs after plastic deformation (external rods)

> IAM Institute for Applied Materials

CORA Severe Fuel Damage Facility (1987 – 1993)

Overview of CORA matrix: 19 bundle tests performed;

initial heat-up rate \approx 1.0 Kj/s; steam flow rate, PWR: 6 g/s, BWR: 2 g/s; quench rate (from the bottom) \approx 1 cm/s; UO₂ pellets;

planned tests 24-27 and 32 (three with quench, all with B_4C) were not performed

Test No.	Max. Cladding Temperatures	Absorber Material	Other Test Conditions	Date of Test
2	2000°C	-	U0 ₂ refer., Inconel spacer	Aug. 6, 1987
3	2400°C	-	U0 ₂ refer., high temperature	Dec. 3, 1987
5	2000°C	Ag, In, Cd	PWR-absorber	Febr. 26, 1988
12	2000°C	Ag, In, Cd	quenching	June9, 1988
16	2000°C	B ₄ C	BWR-absorber	Nov. 24, 1988
15	2000°C	Ag, In, Cd	rods with internal pressure	March 2, 1989
17	2000°C	B ₄ C	quenching	June 29, 1989
9	2000°C	Ag, In, Cd	10 bar system pressure	Nov. 9,1989
7	<2000°C	Ag, In, Cd	57-rod bundle, slow cooling	Febr. 22, 1990
18	<2000°C	B ₄ C	59-rod bundle, slow cooling	June 21, 1990
13	2000°C	Ag, In, Cd	OECD/ISP; quench initiation at higher temperature	Nov. 15, 1990
29	2000°C	Ag, In, Cd	pre-oxidized	April 11 , 1991
31	2000°C	B ₄ C	slow initial heat-up (0.3 K/s)	July 25,1991
30	2000°C	Ag, In, Cd	slow initial heat-up (0.2 K/s)	Oct. 30, 1991
28	2000°C	B ₄ C	pre-oxidized	Febr. 25, 1992
10	2000°C	Ag, In, Cd	cold lower end, 2 g/s steam flow rate	July 16, 1992
33	2000°C	B ₄ C	dry core conditions, no extra steam input	Oct. 1,1992
W1	2000°C	-	VVER-test	Febr. 18, 1993
W2	2000°C	B ₄ C	VVER-test with absorber	April 21 , 1993

11.10.2011 J. Stuckert – KIT accident research

Summary of the CORA program

- The extent of severe fuel damage is mainly determined by the peak temperature. Critical temperature regimes are
 - 1200-1400°C (low-temperature melt formation/ relocation, localized core damage),
 - 1760-2000°C (fuel rod failure, extended core damage),
 - 2600-2850°C (melting of ceramic constituents, total core destruction).
- It might be impossible to stop the temperature increase. The CORA quench tests have demonstrated, that the quench process did not result in an immediate decrease of the bundle temperature. A preliminary temperature increase (due to exothermic Zirconium /steam reaction) connected to a rise in hydrogen production was registered in all tests. This is in agreement with the in-pile tests LOFT LP-FP2 and PBF-ST4 and the TMI accident.
- > The BWR test CORA-17 shows a higher temperature and hydrogen increase during to quench phase than the similar PWR tests. This additional temperature and hydrogen increase is caused by the exothermic B_4C /steam reaction.
- To better understanding of quench details with aim to include these phenomena in codes the QUENCH program was initiated.

QUENCH High Temperature Reflood Facility beginning of operation1997

high temperature large-scale QUENCH facility:
✓ hydrogen source term ✓ behavior of cladding materials
✓ bundle coolability ✓ validation of computer codes

Zircaloy rod Ø 6 mm unheated roo Zry cladding ZrO₂ pellet central TC ling jacks eated rod shroud, Zircalo tungsten heater 2ry cladding ZrO₂ annular pellet Insulation ZrO₂ fiber Ar + steam + H; quench line Containn DC Power supply

11.10.2011 J. Stuckert – KIT accident research CEG-SAM 2011, Moscow

QUENCH matrix: 17 bundle tests performed; pre-oxidation in steam (≈ 3 g/s) and Ar (≈ 3 g/s); ZrO ₂ pellets										
Test	Quench medium / Injection rate	Temp. at onset of flooding	Max. ZrO ₂ before transient	Max. ZrO ₂ before flooding	Max. ZrO ₂ after test	H ₂ production before / during cooldown	Remarks, objectives; final conditions			
QUENCH-00 Oct. 9 - 16, 97	Water 80 g/s	≈ 1800 K			completely oxidized		commissioning test			
QUENCH-01 February 26, 98	Water 52 g/s	≈ 1830 K	312 µm		500 μm at 913 mm	36 / 3	pre-oxidized cladding			
QUENCH-02 July 7, 98	Water 47 g/s	≈ 2400 K			completely oxidized	20 / <mark>140</mark>	COBE: no additional pre- oxidation; melt			
QUENCH-03 January 20, 99	Water 40 g/s	≈ 2350 K			completely oxidized	18 / <mark>120</mark>	no additional pre-oxidation; melt			
QUENCH-04 June 30, 99	Steam 50 g/s	≈ 2160 K	82 µm		280 µm	10/2	slightly pre-oxidized cladding			
QUENCH-05 March 29, 2000	Steam 48 g/s	≈ 2020 K	160 µm		420 µm	25 / 2	pre-oxidized cladding			
QUENCH-06 Dec. 13 2000	Water 42 g/s	≈ 2060 K	207 µm	300 µm	670 µm	32 / 4	OECD-ISP 45			
QUENCH-07 July 25, 2001	Steam 15 g/s	≈ 2100 K	230 µm		completely oxidized	66 / <mark>120</mark>	COLOSS: B₄C ; melt			
QUENCH-09 July 3, 2002	Steam 49 g/s	≈ 2100 K			completely oxidized	60 / <mark>400</mark>	COLOSS: B₄C , steam starvation, very high T; melt			
QUENCH-08 July 24, 2003	Steam 15 g/s	≈ 2090 K	274 µm		completely oxidized	46 / <mark>38</mark>	reference to QUENCH-07 (without B₄C); melt			
QUENCH-10 July 21, 2004	Water 50 g/s	≈ 2200 K	514 µm	613 µm (at 850 mm)	completely oxidized	48 / 5	LACOMERA: air ingress; nitrides			
QUENCH-11 Dec 08, 2005	Water 18 g/s	≈ 2040 K		170 µm	completely oxidized	9 / <mark>132</mark>	LACOMERA: boil-off; melt			
QUENCH-12 Sept 27, 2006	Water 48 g/s	≈ 2100 K	160 µm, breakaway	300 µm, breakaway	completely oxidized	34 / <mark>24</mark>	ISTC: VVER; <mark>breakaway</mark>			
QUENCH-13 Nov. 7, 2007	Water 52 g/s	≈ 1820 K		400 µm	750 µm	42 / 1	SARNET: Ag/In/Cd (aerosol)			
QUENCH-14 July 2, 2008	Water 41 g/s	≈ 2100 K	170 µm	470 µm	840 µm	34 / 6	M5 [®] cladding			
QUENCH-15 May 27, 2009	Water 48 g/s	≈ 2100 K	145 µm	320 µm	630 µm	41 / 7	ZIRLO [™] cladding			
QUENCH-16 July 27, 2011	Water 50 g/s	≈ 2400 K	150 µm	tbd	tbd	14 / 128	LACOMECO: air ingress; nitrides, breakaway, melt			

11.10.2011 J. Stuckert – KIT accident research

Melt oxidation as main source of hydrogen production

CEG-SAM 2011, Moscow

B₄**C** absorber rod as trigger of early melt formation

- Two tests performed under identical conditions:
- > QUENCH-07 with B₄C absorber rod
- > QUENCH-08 without absorber rod

Fukushima Recovery Action: Prevention of Hydrogen Explosion

 N_2 gas has been injected into unit 1 PCV to reduce the risk of a hydrogen explosion since April 7.

Air ingress influence on cladding

Oxidation of Zry-4 in mixed <u>nitrogen-steam</u> atmospheres (M. Steinbrück)

Main results of the QUENCH program

- A nuclear reactor core seems to be coolable and the hydrogen production during reflood is not noticeable when the core is still intact and no or only local melt formation has already taken place. This is a realistic boundary condition up to 1900 °C provided if
 - the reflood water flow rate is >1 g/s per rod,
 - no strong eutectic melt formation (e.g. by absorber materials) occurred,
 - breakaway oxidation took no place,
 - extended steam starvation phases before reflooding was avoided.
- Air ingress may have diverse effects on bundle degradation and coolability. On the one hand, energy release by air oxidation is higher, and the cooling effect is lower in comparison with steam. Furthermore, oxidation in a nitrogen-containing atmosphere accelerates the kinetics and may lead to the formation of strongly degraded oxide scales. On the other hand, no hydrogen is produced by oxidation of metals in air, thus reducing the risk of hydrogen detonations.

Outlook

Bundle tests under LOCA conditions planed to be performed with different cladding materials

Bundle tests on debris formation and debris coolability are planed in framework of European SARNET-2 program

Thank you for your attention

http://www.iam.kit.edu/wpt/english/471.php/ http://quench.forschung.kit.edu/

11.10.2011 J. Stuckert – KIT accident research CEG-SAM 2011, Moscow

