Home | english  | Impressum | Sitemap | KIT
august

Dr. rer. nat. Anastasia August

Raum: 110.2
Tel.: +49 721 608-45313
anastasia august2Ljo6∂kit edu

IAM-CMS, Gruppenleitung:
Multiphysics Materials Modelling: Microstructure - Heat and Mass Transfer

Institut für Angewandte Materialien
Computational Materials Science (IAM-CMS)
MZE - Geb. 30.48
Straße am Forum 7
76131 Karlsruhe
 



Forschung

Modellierung des Wärmetransports in porösen Strukturen unter Anderem unter dem Einfluss von Strömungen

Die Forschungsaktivitäten der Gruppe "Multiphysics Materials Modelling: Microstructure-Heat-and-Mass Transfer" von Dr. rer. nat. Anastasia August umfasst die Modellierung des Wärmetransports in porösen Strukturen unter Anderem unter dem Einfluss von Strömungen. Ziel ist es, die Effizienz von Wärmetauschern, -kollektoren und -speichern abhängig von der Gefügestruktur und den Materialeigenschaften zu verbessern. Bei der Modellierung der Prozessabläufe werden Phasenumwandlungsprozesse des fluiden Mediums berücksichtigt. Die Forschungsgruppe entwickelt optimale Strukturen der beteiligten porösen Stoffe, beispielsweise eines Metallschaums.

 

Forschung_August

Foto: Dr. Marco Berghoff

 

Wichtigste Forschungsprojekte

 

Metallschäume

Metallschäume sind Materialien mit ausgezeichneten Eigenschaften. Sie sehen aus wie Bierschäume, nur ohne Bier und im Wesentlichen ohne die Zwischenwände zwischen den einzelnen Bläschen. Nur wo sich drei oder mehr Bläschen zusammentreffen, ist noch Material. Diese so genannten Stege bilden ein unregelmäßiges festes Netz, das viele Eigenschaften des Grundmaterials – Metall – nach wie vor weitgehend besitzt: Wärmeleitfähigkeit, Stabilität, elektrische Leitfähigkeit. Darüber hinaus bieten sie noch viel mehr: Die Leichtigkeit, der geringere Grundmaterialbedarf und – ganz besonders – die große Oberfläche im Vergleich zum Volumen. Über diese Oberfläche kann zum Beispiel die Wärme mit der Luft, die sich um die Stege herum befindet, ausgetauscht werden. Diese Eingenschaft, verbunden mit der guten thermischen Leitfähigkeit von Metall, macht Metallschäume zu beliebten Gegenständen unserer Forschung im Rahmen des KIT-Programms Energieeffizienz, Materialien und Ressourcen.

Link: http://www.emr.kit.edu/

 

Solarthermie

Die Sonnenenergie kann von schwarzen Gegenständen besonders gut absorbiert werden. So ist die Haut eines Polarbären schwarz, damit er aus dem Sonnenlicht am Nordpol so viel Energie wie möglich raus holen kann. Die weißen Fellhaare, die das Sonnenlicht durch lassen, dienen der Isolation der eigenen Körperwärme. Nach diesem Prinzip werden im Projekt Solarthermie – zusammen mit dem Projektpartner Institut für Textil- und Verfahrenstechnik Denkendorf (→ https://www.uni-stuttgart.de/forschung/orp/inst_profile/we/itv.html) Wärmekollektoren aus textilem Abstandsgewirk entwickelt. Neben der Energiegewinnung spielt natürlich auch ihre Speicherung eine große Rolle. Im zweiten Projektschritt werden neue Speicheranlagen geprüft: Etwa kleine, mit Paraffin gefüllte Fingerhut-große Eimerchen, die unmittelbar unter den textilen Kollektor platziert werden sollen. Paraffin speichert latente Wärme beim Aufschmelzen und setzt sie beim Erstarren wieder frei. Wir am CMS prüfenverschiedene Systeme mit Hilfe von Computersimulationen und machen Verbesserungsvorschläge für ihre Geometrie.

Poröse Wasserrohre

Der möglichst effiziente Umgang mit Energieressourcen ist eine wichtige Herausforderung der Zukunft. Daraus ergibt sich die Suche  nach effizienten, günstigen und praktischen Stoffen zur Wärmeleitung und -Speicherung in den Materialwissenschaften. Metallische Schäume stellen einen vielversprechenden Lösungsansatz für Probleme der Energieübertragung und -Speicherung dar, da sie sowohl die Eigenschaft der Durchlässigkeit für Fluide als auch die der großen Oberfläche besitzen. Das ermöglicht das effizientere Erwärmen von Flüssigkeiten und anderen möglichen Füllungen. Ziel ist hierbei eine möglichst große Wärmeübertragung bei einem gleichzeitig möglichst geringem Druckverlust. Die Herstellung dieser Schäume geschieht zunächst in Computersimulationen, in denen der Werkstoff auf verschiedene Bedingungen, wie Temperatur- oder Druckveränderungen und den Einfluss verschiedener Porengrößen getestet wird. Anschließend wird mithilfe eines 3D Druckers ein Modell für den Feinguss des optimalen Schaums hergestellt.

Anwendung finden Metallschäume beispielsweise in der Konzeption von Wasserrohren, die ihre Energie effizienter an das Wasser abgeben.

Forschung_August

 

InSel: Innovative Schaumstrukturen für effizienten Leichtbau

Das Forschungsprojekt InSel (Innovative Schaumstoffstrukturen für den effizienten Leichtbau) ist eine Forschungsinitiative zur Leichtbauforschung in Baden-Württemberg, bestehend aus dem Zusammenschluss verschiedener Universitäten, außeruniversitären Einrichtungen und Unternehmen, an denen das IAM des KIT beteiligt ist. Es beinhaltet die gemeinsame Forschung, aber auch die Wissenskommunikation der Forschungsergebnisse an Unternehmen, sowie die Vernetzung der InSel Mitglieder zu weiteren Forschungsprojekten. Dabei stehen drei Aspekte für die InSel Mitglieder im Vordergrund:

 

Innovationsaspekt:

Durch die immer weiter fortschreitende Technologie sind poröse Strukturen sehr gefragte Werkstoffe, deren Entwicklung jedoch mit einigen Herausforderungen verbunden ist, wie beispielsweise die Entwicklung von Kompositen.

 

wirtschaftlicher Aspekt:

Das InSel Projekt soll die wirtschaftliche Erschließung bisher nicht ausreichend nutzbar gemachter poröser Materialien ermöglichen. Damit wird die Wettbewerbsfähigkeit vor allem mittelständischer Unternehmen gesteigert.

 

Kommunikationsaspekt:

Dieser beinhaltet die Wissenskommunikation an Unternehmen. Durch den interdisziplinären Ansatz soll zudem die Kommunikation der Forschenden untereinander gestärkt werden.

 

Unser Teilprojekt:

Wir am CMS beteiligten uns an diesem Projekt mit Computersimulationen im Bereich Polymerschäume, welche als Vorform beim Gießen von besonders feinporigen und monodispersen Metallschäumen dienen.

 

Link: https://www.hs-pforzheim.de/insel

 

 

 

 

 

 

 

Populärwissenschaftliche Vorträge
Titel Tagung Autoren

Metallschaum und Paraffin: Youtube

Stetigkeit: Youtube

Eisbär: Feeds Video Uni-Erlangen

Dr. Anastasia August

Metallschaum Teil 1: Youtube

Metallschaum Teil 2: Youtube

Wärmeleitfähigkeit: Youtube

Nebelfänger Teil 1: Youtube

Nebelfänger Teil 2: Youtube

Eisbär Teil 1: Youtube

Eisbär Teil 2: Youtube

Talking Science: Karlsruhe-Blog

Famelab: clickit-magazin

Dr. Anastasia August

Podcast: Math KIT

Dr. Anastasia August



Publikationsliste


Posters
  1. Development and numerical investigation of metal foam based modular latent heat storage cell.
    Kneer, A.; August, A.; Nestler, B.; Martens, E.
    2013. 2nd International Conference on Materials for Energy (EnMat 2013), Karlsruhe, 12.-16. Mai 2013
  2. Thermal conductivity of air filled open cell aluminum foams.
    August, A.; Nestler, B.; Rölle, M.; Schmid, S.; Ettrich, J.
    2013. 2nd International Conference on Materials for Energy (EnMat 2013), Karlsruhe, 12.-16. Mai 2013
  3. Thermal conductivity of air filled open cell aluminum foams.
    August, A.; Nestler, B.; Rölle, M.; Schmid, S.; Ettrich, J.
    2012. Biannual Internat.Conf.on Materials Science Engineering (MSE 2012), Darmstadt, September 25-27, 2012
  4. Computational analysis of bio inspired thermal absorber systems made of textile fabrics.
    Schoof, E.; Römmelt, M.; Selzer, M.; August, A.; Nestler, B.; Kneer, A.; Stegmaier, T.
    2012. International School and Conference on Biological Materials Science, Potsdam, March 20-23, 2012
  5. Phase-field study of the fragmentation secondary arm in Al-Cu alloys.
    Wesner, E.; Choudhury, A.; August, A.; Berghoff, M.; Nestler, B.
    2011. Euromat 2011 : European Congress and Exhibition on Advanced Materials and Processes, Montpellier, F, September 12-15, 2011
  6. Eigenspannungsentwicklung in metallischen Schäumen.
    August, A.
    2010. Nachwuchsakademie 'Analyse und Bewertung von Eigenspannungen auf unterschiedlichen Längenskalen', Kassel, 15.Oktober 2010
  7. Efficiency study of metal foams for heat storage and heat exchange.
    August, A.; Nestler, B.; Wendler, F.; Selzer, M.; Kneer, A.; Martens, E.
    2010. 5th Internat.Conf.on Multiscale Materials Modeling (MMM 2010), Freiburg, October 4-8, 2010
Presentations
  1. Simulation der Eigenspannungsentwicklung in metallischen Schäumen.
    August, A.
    2015. Nachwuchsakademie 'Analyse und Bewertung von Eigenspannungen auf unterschiedlichen Längenskalen', Kassel, 24.-28.Mai 2010
  2. Digital representation of complex cellular structures for numerical simulations.
    Ettrich, J.; August, A.; Roelle, M.; Nestler, B.
    2014. Cellular Materials (CellMAT 2014), Dresden, October 22-24, 2014
  3. Open cell metal foams: Measurement and numerical modelling of fluid flow and heat transfer.
    Ettrich, J.; August, A.; Nestler, B.
    2014. Cellular Materials (CellMAT 2014), Dresden, October 22-24, 2014
  4. A numerical approach to derive analytical correlations for pressure drop and heat transfer for open cell porosities.
    August, A.; Kneer, A.; Janßen-Tapken, K.; Nestler, B.
    2014. Cellular Materials (CellMAT 2014), Dresden, October 22-24, 2014
  5. Advanced coupled simulation methods for heat transfer and stiffnessphenomena induced by fluid flow in metal foams.
    Kneer, A.; Janssen-Tapken, K.; Reimann, K.; August, A.; Nestler, B.
    2013. 5th International Conference on Computational Methods for Coupled Problems in Sciennce and Engineering, Santa Eulalia, Ibiza, E, June 17-19, 2013
  6. Metallische Schäume: Aktuelle Projekte am KIT-ZBS.
    August, A.
    2012. Nachwuchsakademie 'Analyse und Bewertung von Eigenspannungen auf unterschiedlichen Längenskalen', Kassel, 23.-24.April 2012
  7. Metallic foam structures, dendrites and implementation optimizations for phase-field modeling.
    Vondrous, A.; Nestler, B.; August, A.; Wesner, E.; Choudhury, A.; Hötzer, J.
    2011. High Performance Computing in Science and Engineering, Stuttgart, October 4-5, 2011
  8. Simulation of heat propagation in open cell metal foams.
    August, A.
    2011. Euromat 2011 : European Congress and Exhibition on Advanced Materials and Processes, Montpellier, F, September 12-15, 2011
  9. Phase field simulations of heat propagation in open cell metal foam.
    August, A.
    2011. Materials Research Society Spring Meeting, San Francisco, Calif., April 25-29, 2011
  10. Analysis of thermal evolution in textile fabrics using advanced microstructure simulation techniques.
    Römmelt, M.; August, A.; Nestler, B.; Kneer, A.
    2011. 5th Internat.Conf.on Textile Composites and Inflatable Structures (Structural Membranes 2011), Barcelona, E, October 5-7, 2011
  11. Efficiency study of metal foams for heat storage and heat exchange.
    August, A.
    2010. International Conference on Cellular Materials (CellMat 2010), Dresden, October 27-29, 2010
Conference Proceedings Articles
  1. Phase-field simulations of large-scale microstructures by integrated parallel algorithms.
    Hötzer, J.; Jainta, M.; Vondrous, A.; Ettrich, J.; August, A.; Stubenvoll, D.; Reichardt, M.; Selzer, M.; Nestler, B.
    2015. High Performance Computing in Science and Engineering '14 : Transactions of the High Performance Computing Center, Stuttgart (HLRS), 2014. Hrsg.: W. E. Nagel, 629-644, Springer, Cham. doi:10.1007/978-3-319-10810-0_41
  2. Digital representation of complex cellular structures for numerical simulations.
    Ettrich, J.; August, A.; Roelle, M.; Nestler, B.
    2014. Cellular Materials (CellMAT 2014), Dresden, 22.-24. Oktober 2014, CD-ROM
  3. Open cell metal foams: Measurement and numerical modelling of fluid flow and heat transfer.
    Ettrich, J.; August, A.; Nestler, B.
    2014. Cellular Materials (CellMAT 2014), Dresden, 22.-24. Oktober 2014, CD-ROM
  4. Metallic foam structures, dendrites and implementation optimizations for phase-field modeling.
    Vondrous, A.; Nestler, B.; August, A.; Wesner, E.; Choudhury, A.; Hötzer, J.
    2012. High performance computing in science and engineering ' 11 : transactions of the High Performance Computing Center, Stuttgart (HLRS) 2011. Ed.: W.E. Nagel, 595-606, Springer, Berlin. doi:10.1007/978-3-642-23869-7_43
  5. Analysis of thermal evolution in textile fabrics using advanced microstructure simulation techniques.
    Römmelt, M.; August, A.; Nestler, B.; Kneer, A.
    2011. 5th Internat.Conf.on Textile Composites and Inflatable Structures (Structural Membranes 2011), Barcelona, E, October 5-7, 2011. Ed.: E. Onate, 614-626
  6. Efficiency Study of Metal Foams for Heat Storage and Heat Exchange.
    August, A.; Nestler, B.; Wendler, F.; Selzer, M.; Kneer, A.; Martens, E.
    2010. CELLMAT 2010 : Proceedings of the International Conference on Cellular Materials, Dresden, Germany, October 27 - 29, 2010. Ed.: G. Stephan, 148-151, Fraunhofer Institute for Manufacturing Technology and Advanced Materials, Dresden
  7. Efficiency study of metal foams for heat storage and heat exchange.
    August, A.; Nestler, B.; Wendler, F.; Selzer, M.; Kneer, A.; Martens, E.
    2010. Gumbsch, P. [Hrsg.] Proc.of the 5th Internat.Conf.on Multiscale Materials Modeling (MMM 2010), Freiburg, October 4-8, 2010 Stuttgart : Fraunhofer Verl., 2010, 355-358
Journal Articles
  1. Perspectives on material modelling: Porous and particle-based microstructures.
    Nestler, B.; August, A.; Selzer, M.; Hötzer, J.; Kellner, M.; Prajapati, N.; Rehn, V.; Seiz, M.
    2018. Ceramic applications, 6 (1), 73-77
  2. Sonnenbäder am Nordpol: Das Eisbär-Prinzip für Gebäude.
    August, A.; Nestler, B.; Kneer, A.
    2015. Horizonte : Forschung an Fachhochschulen in Baden-Württemberg, (45), 68
  3. Prediction of heat conduction in open-cell foams via the diffuse interface representation of the phase-field method.
    August, A.; Ettrich, J.; Rölle, M.; Schmid, S.; Berghoff, M.; Selzer, M.; Nestler, B.
    2015. International Journal of Heat and Mass Transfer, 84, 800-808. doi:10.1016/j.ijheatmasstransfer.2015.01.052
  4. Metallische Schneeflocken.
    Wesner, E.; August, A.; Nestler, B.
    2014. Horizonte : Forschung an Fachhochschulen in Baden-Württemberg, (43), 29-31
  5. Modelling of transient heat conduction with diffuse interface methods.
    Ettrich, J.; Choudhury, A.; Tschukin, O.; Schoof, E.; August, A.; Nestler, B.
    2014. Modelling and simulation in materials science and engineering, 22 (8), Art.Nr. 085006/1-29. doi:10.1088/0965-0393/22/8/085006
  6. A phase-field study of large-scale dendrite fragmentation in Al-Cu.
    Wesner, E.; Choudhury, A.; August, A.; Berghoff, M.; Nestler, B.
    2012. Journal of crystal growth, 359 (1), 107-121. doi:10.1016/j.jcrysgro.2012.08.036
  7. Comparison of phase-field and cellular automaton models for dendritic solidification in Al-Cu alloy.
    Choudhury, A.; Reuther, K.; Wesner, E.; August, A.; Nestler, B.; Rettenmayr, M.
    2012. Computational materials science, 55, 263-268. doi:10.1016/j.commatsci.2011.12.019
  8. Offenporige metallische Schäume.
    August, A.; Nestler, B.; Kneer, A.; Wendler, F.; Rölle, M.; Selzer, M.
    2011. Werkstoffe in der Fertigung, 2011 (6), 45-46