Microstructure – Mechanics

Ansprechpartner: Dr.-Ing. Daniel Schneider

BildIAM-CMS

Research

The research group "Microstructure – Mechanics" investigates the interactions between microstructural and mechanical parameters on the mesoscopic length scale of materials. Both the evolution of grains and domains and the resulting heterogeneous microstructure have a decisive influence on the physical properties of materials. Therefore, the understanding of these mechanisms and possible defects is essential for the virtual development of materials (Virtual Materials Design). The physical processes at the interfaces are investigated by integrating mainly mechanical, but also chemical, thermal and electromagnetic driving forces. This is done using the phase-field method, coupled with numerical algorithms. Thus, process parameters can be optimized, production costs can be reduced, effective material properties can be optimized or new materials can be developed. Current research questions relate to the recrystallization process, solid-solid phase transformation processes as well as electrochemical processes and crack propagation. The materials considered are metals, fiber composite materials, lithium-ion batteries and piezo crystals.

Team
Name Function
Group Leader
 
Research assistant
Research Assistant
Research Fellow
group leader
Research Associate
Gruppenleiter
Research assistant
Research assistant
Research assistant
5 additional persons visible within KIT only.

Publications


2021
Simulating mechanical wave propagation within the framework of phase-field modelling.
Liu, X.; Schneider, D.; Daubner, S.; Nestler, B.
2021. Computer methods in applied mechanics and engineering, 381, Article: 113842. doi:10.1016/j.cma.2021.113842
Morphological stability of three-dimensional cementite rods in polycrystalline system : A phase-field analysis.
Mittnacht, T.; Kubendran Amos, P. G.; Schneider, D.; Nestler, B.
2021. Journal of materials science & technology, 77, 252–268. doi:10.1016/j.jmst.2020.11.019
Effect of conductivity on the electromigration-induced morphological evolution of islands with high symmetries of surface diffusional anisotropy.
Santoki, J.; Mukherjee, A.; Schneider, D.; Nestler, B.
2021. Journal of applied physics, 129 (2), Ar. Nr.: 025110. doi:10.1063/5.0033228
Phase-field formulation of a fictitious domain method for particulate flows interacting with complex and evolving geometries.
Reder, M.; Schneider, D.; Wang, F.; Daubner, S.; Nestler, B.
2021. International Journal for Numerical Methods in Fluids. doi:10.1002/fld.4984
Multiphase-field model for surface diffusion and attachment kinetics in the grand-potential framework.
Hoffrogge, P. W.; Mukherjee, A.; Nani, E. S.; Amos, P. G. K.; Wang, F.; Schneider, D.; Nestler, B.
2021. Physical review / E, 103 (3), Article no: 033307. doi:10.1103/PhysRevE.103.033307
Multiphase-field modeling of spinodal decomposition during intercalation in an Allen-Cahn framework.
Daubner, S.; Kubendran Amos, P. G.; Schoof, E.; Santoki, J.; Schneider, D.; Nestler, B.
2021. Physical review materials, 5 (3), Article no: 035406. doi:10.1103/PhysRevMaterials.5.035406
2020
Influence of stress-free transformation strain on the autocatalytic growth of bainite: A multiphase-field analysis.
Schoof, E.; Kubendran Amos, P. G.; Schneider, D.; Nestler, B.
2020. Materialia, 9, Article: 100620. doi:10.1016/j.mtla.2020.100620
Phase-inherent linear visco-elasticity model for infinitesimal deformations in the multiphase-field context.
Schwab, F. K.; Reiter, A.; Herrmann, C.; Schneider, D.; Nestler, B.
2020. Advanced modeling and simulation in engineering sciences, 7 (1), Art.-Nr.: 47. doi:10.1186/s40323-020-00178-x
Multiphase-field modelling of crack propagation in geological materials and porous media with Drucker-Prager plasticity.
Späth, M.; Herrmann, C.; Prajapati, N.; Schneider, D.; Schwab, F.; Selzer, M.; Nestler, B.
2020. Computational geosciences. doi:10.1007/s10596-020-10007-0
Brittle anisotropic fracture propagation in quartz sandstone: insights from phase-field simulations.
Prajapati, N.; Herrmann, C.; Späth, M.; Schneider, D.; Selzer, M.; Nestler, B.
2020. Computational geosciences, 24, 1361–1376. doi:10.1007/s10596-020-09956-3
2019
On the multiphase-field modeling of martensitic phase transformation in dual-phase steel using J2-viscoplasticity.
Schoof, E.; Herrmann, C.; Streichhan, N.; Selzer, M.; Schneider, D.; Nestler, B.
2019. Modelling and simulation in materials science and engineering, 27 (2), 025010. doi:10.1088/1361-651X/aaf980
Phase-Field Study of Electromigration-Induced Shape Evolution of a Transgranular Finger-Like Slit.
Santoki, J.; Mukherjee, A.; Schneider, D.; Selzer, M.; Nestler, B.
2019. Journal of electronic materials, 48 (1), 182–193. doi:10.1007/s11664-018-6619-5
On the Volume-Diffusion Governed Termination-Migration Assisted Globularization in Two-Phase Solid-State Systems: Insights from Phase-Field Simulations.
Amos, P. G. K.; Schoof, E.; Schneider, D.; Nestler, B.
2019. Proceedings of the 1st International Conference on Numerical Modelling in Engineering – Volume 2: Numerical Modelling in Mechanical and Materials Engineering, NME 2018, 28-29 August 2018, Ghent University, Belgium. Ed.: M. Abdel Wahab, 47–63, Springer. doi:10.1007/978-981-13-2273-0_5
Phase-field analysis of quenching and partitioning in a polycrystalline Fe-C system under constrained-carbon equilibrium condition.
Kubendran Amos, P. G.; Schoof, E.; Streichan, N.; Schneider, D.; Nestler, B.
2019. Computational materials science, 159, 281–296. doi:10.1016/j.commatsci.2018.12.023
2018
Multiphase-field model of small strain elasto-plasticity according to the mechanical jump conditions.
Herrmann, C.; Schoof, E.; Schneider, D.; Schwab, F.; Reiter, A.; Selzer, M.; Nestler, B.
2018. Computational mechanics, 62 (6), 1399–1412. doi:10.1007/s00466-018-1570-0
Chemo-elastic phase-field simulation of the cooperative growth of mutually-accommodating Widmanstätten plates.
Kubendran Amos, P. G.; Schoof, E.; Schneider, D.; Nestler, B.
2018. Journal of alloys and compounds, 767, 1141–1154. doi:10.1016/j.jallcom.2018.07.138
Multiphase-field modeling of martensitic phase transformation in a dual-phase microstructure.
Schoof, E.; Schneider, D.; Streichhan, N.; Mittnacht, T.; Selzer, M.; Nestler, B.
2018. International journal of solids and structures, 134, 181–194. doi:10.1016/j.ijsolstr.2017.10.032
Correction to: Small strain multiphase-field model accounting for configurational forces and mechanical jump conditions.
Schneider, D.; Schoof, E.; Tschukin, O.; Reiter, A.; Herrmann, C.; Schwab, F.; Selzer, M.; Nestler, B.
2018. Computational mechanics, 61 (3), 297. doi:10.1007/s00466-017-1485-1
Small strain multiphase-field model accounting for configurational forces and mechanical jump conditions.
Schneider, D.; Schoof, E.; Tschukin, O.; Reiter, A.; Herrmann, C.; Schwab, F.; Selzer, M.; Nestler, B.
2018. Computational mechanics, 61 (3), 277–295. doi:10.1007/s00466-017-1458-4
Phase-field study of surface irregularities of a cathode particle during intercalation.
Santoki, J.; Schneider, D.; Selzer, M.; Wang, F.; Kamlah, M.; Nestler, B.
2018. Modelling and simulation in materials science and engineering, 26 (6), 065013. doi:10.1088/1361-651X/aad20a
2017
Concepts of modeling surface energy anisotropy in phase-field approaches.
Tschukin, O.; Silberzahn, A.; Selzer, M.; Amos, P. G. K.; Schneider, D.; Nestler, B.
2017. Geothermal Energy, 5 (1), Art.Nr. 19. doi:10.1186/s40517-017-0077-9
Simulation der martensitischen Transformation in polykristallinen Gefügen mit der Phasenfeldmethode.
Schoof, E.; Streichhan, N.; Schneider, D.; Selzer, M.; Nestler, B.
2017. Forschung aktuell, 13–16
2016
Evolution von Mikroporen in Kristallen mit hexagonaler Gitteranisotropie.
Schneider, D.; Langerome, B.; Selzer, M.; Reiter, A.; Nestler, B.
2016. Forschung aktuell, 36–38
Phasenfeldmodellierung mechanisch getriebener Grenzflächenbewegungen in mehrphasigen Systemen. PhD dissertation.
Schneider, D.
2016. Karlsruher Institut für Technologie (KIT). doi:10.5445/IR/1000066948
Calibration of a multi-phase field model with quantitative angle measurement.
Hötzer, J.; Tschukin, O.; Ben Said, M.; Berghoff, M.; Jainta, M.; Barthelemy, G.; Smorchkov, N.; Schneider, D.; Selzer, M.; Nestler, B.
2016. Journal of materials science, 51 (4), 1788–1797. doi:10.1007/s10853-015-9542-7
Phase-field modeling of crack propagation in multiphase Systems.
Schneider, D.; Schoof, E.; Huang, Y.; Selzer, M.; Nestler, B.
2016. Computer methods in applied mechanics and engineering, 312, 186–195. doi:10.1016/j.cma.2016.04.009
2015
Small strain elasto-plastic multiphase-field model.
Schneider, D.; Schmid, S.; Selzer, M.; Boehlke, T.; Nestler, B.
2015. Computational Mechanics, 55 (1), 27–35. doi:10.1007/s00466-014-1080-7
Phase-field elasticity model based on mechanical jump conditions.
Schneider, D.; Tschukin, O.; Choudhury, A.; Selzer, M.; Böhlke, T.; Nestler, B.
2015. Computational mechanics, 55 (5), 887–901. doi:10.1007/s00466-015-1141-6
Materials research for energy supply at Karlsruhe Institute of Technology.
Krüssmann, R.; Gräning, T.; Janda, D.; Ruck, S.; Schneider, D.; Strassberger, L.; Vladimirov, P.; Yurechko-Hussy, M.
2015. Energy, Science and Technology, Conference and Exhibition (EST 2015), Karlsruhe, Germany, May 20–22, 2015
Combined crystal plasticity and phase-field method for recrystallization in a process chain of sheet metal production.
Vondrous, A.; Bienger, P.; Schreijäg, S.; Selzer, M.; Schneider, D.; Nestler, B.; Helm, D.; Mönig, R.
2015. Computational mechanics, 55 (2), 439–452. doi:10.1007/s00466-014-1115-0
2014
Phase-field modeling of diffusion coupled crack propagation processes.
Schneider, D.; Selzer, M.; Bette, J.; Rementeria, I.; Vondrous, A.; Hoffmann, M. J.; Nestler, B.
2014. Advanced Engineering Materials, 16 (2), 142–146. doi:10.1002/adem.201300073
2012
Elasto-plastisches Materialverhalten – ein Mikrostrukturmodell für plastische Verformung.
Höhn, J.; Schneider, D.; Schmid, S.; Nestler, B.
2012. Forschung aktuell, 2012, 56–57