High Performance Materials Simulation



The requirements for innovative components require materials with a defined property profile. These depend on the chemical composition and on the microstructure developed during the manufacturing process. Therefore, a better understanding of microstructure development enables the manufacture of components with tailored properties.
In order to use the high-performance computing system as efficiently as possible, highly optimized and vectorized codes of the models, used for the simulation, are developed in the group.
The simulations run on high-performance computers, such as those used at the High-Performance Computing Center Stuttgart (HLRS). The simulations are carried out on tens of thousands of computing units, with the massively parallel solvers Pace3D and waLBerla developed at the institute.
Concerning alloys, the focus of the work is primarily on the development of microstructures through different process parameters, which, for example, occurs during the directional solidification of binary and tenary eutectics, as well as on the coupled eutectic-dendritic growth.
Furthermore, the research group deals with the simulation of solid phase sintering in the initial and medium state as well as the development of microstructures in the final stage of sintering, under the influence of pores.
To generate realistic microstructures, such as microstructures of green bodies with a defined density, particle size distribution and particle shape, and evaluate the large-scale simulation results, for example in the development of fibers during directional solidification, different tools are also developed in the group.

Name Function
Postdoctoral researcher
research assistant
Associated team members
Name Function
Wissenschaftlicher Mitarbeiter


Performance-Detective: Automatic Deduction of Cheap and Accurate Performance Models
Schmid, L.; Copik, M.; Calotoiu, A.; Werle, D.; Reiter, A.; Selzer, M.; Koziolek, A.; Hoefler, T.
2022. ACM International Conference on Supercomputing (ICS ’22), Virtual Event, June 28-30, 2022, Association for Computing Machinery (ACM). doi:10.1145/3524059.3532391
Some Implications of Constraints in Phasefield Models. PhD dissertation
Reiter, A.
2021, November 16. Karlsruher Institut für Technologie (KIT). doi:10.5445/IR/1000139899
Data workflow to incorporate thermodynamic energies from Calphad databases into grand-potential-based phase-field models
Dargahi Noubary, K.; Kellner, M.; Hötzer, J.; Seiz, M.; Seifert, H. J.; Nestler, B.
2021. Journal of Materials Science, 56 (20), 11932–11952. doi:10.1007/s10853-021-06033-7
Lustre I/O performance investigations on Hazel Hen: experiments and heuristics
Seiz, M.; Offenhäuser, P.; Andersson, S.; Hötzer, J.; Hierl, H.; Nestler, B.; Resch, M.
2021. The journal of supercomputing. doi:10.1007/s11227-021-03730-7
Modelling and simulation of the freeze casting process with the phase-field method
Seiz, M.; Nestler, B.
2021. Computational materials science, 193, Art.-Nr.: 110410. doi:10.1016/j.commatsci.2021.110410
Extreme Scale Phase-Field Simulation of Sintering Processes
Hierl, H.; Hötzer, J.; Seiz, M.; Reiter, A.; Nestler, B.
2020. 2019 IEEE/ACM 10th Workshop on Latest Advances in Scalable Algorithms for Large-Scale Systems (ScalA), Denver, CO, USA, 18-18 Nov. 2019, 25–32, Institute of Electrical and Electronics Engineers (IEEE). doi:10.1109/ScalA49573.2019.00009
Phase-inherent linear visco-elasticity model for infinitesimal deformations in the multiphase-field context
Schwab, F. K.; Reiter, A.; Herrmann, C.; Schneider, D.; Nestler, B.
2020. Advanced modeling and simulation in engineering sciences, 7 (1), Art.-Nr.: 47. doi:10.1186/s40323-020-00178-x
Bad Nodes Considered Harmful: How to Find and Fix the Problem
Seiz, M.; Hötzer, J.; Hierl, H.; Andersson, S.; Nestler, B.
2020. Sustained Simulation Performance 2018 and 2019 – Proceedings of the Joint Workshops on Sustained Simulation Performance, University of Stuttgart (HLRS) and Tohoku University, 2018 and 2019. Ed.: M. Resch, 123–130, Springer International Publishing. doi:10.1007/978-3-030-39181-2_11
Interface tracking characteristics of color-gradient lattice Boltzmann model for immiscible fluids
Subhedar, A.; Reiter, A.; Selzer, M.; Varnik, F.; Nestler, B.
2020. Physical review / E, 101 (1), Article: 013313. doi:10.1103/PhysRevE.101.013313
Code generation for massively parallel phase-field simulations
Bauer, M.; Hötzer, J.; Ernst, D.; Hammer, J.; Seiz, M.; Hierl, H.; Hönig, J.; Köstler, H.; Wellein, G.; Nestler, B.; Rüde, U.
2019. SC ’19: Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis, Art.-Nr.: a59, Association for Computing Machinery (ACM). doi:10.1145/3295500.3356186
Phase-field study of grain growth in porous polycrystals
Rehn, V.; Hötzer, J.; Rheinheimer, W.; Seiz, M.; Serr, C.; Nestler, B.
2019. Acta materialia, 174, 439–449. doi:10.1016/j.actamat.2019.05.059
A bionic approach for heat generation and latent heat storage inspired by the polar bear
August, A.; Kneer, A.; Reiter, A.; Wirtz, M.; Sarsour, J.; Stegmaier, T.; Barbe, S.; Gresser, G. T.; Nestler, B.
2019. Energy, 168, 1017–1030. doi:10.1016/j.energy.2018.11.143
Phase-field simulation of solid state sintering
Hötzer, J.; Seiz, M.; Kellner, M.; Rheinheimer, W.; Nestler, B.
2019. Acta materialia, 164, 184–195. doi:10.1016/j.actamat.2018.10.021
Multiphase-field model of small strain elasto-plasticity according to the mechanical jump conditions
Herrmann, C.; Schoof, E.; Schneider, D.; Schwab, F.; Reiter, A.; Selzer, M.; Nestler, B.
2018. Computational mechanics, 62 (6), 1399–1412. doi:10.1007/s00466-018-1570-0
The parallel multi-physics phase-field framework PACE3D
Hötzer, J.; Reiter, A.; Hierl, H.; Steinmetz, P.; Selzer, M.; Nestler, B.
2018. Journal of computational science, 26, 1–12. doi:10.1016/j.jocs.2018.02.011
Phase-field modeling of reactive wetting and growth of the intermetallic Al2 Au phase in the Al-Au system
Wang, F.; Reiter, A.; Kellner, M.; Brillo, J.; Selzer, M.; Nestler, B.
2018. Acta materialia, 146, 106–118. doi:10.1016/j.actamat.2017.12.015
Correction to: Small strain multiphase-field model accounting for configurational forces and mechanical jump conditions
Schneider, D.; Schoof, E.; Tschukin, O.; Reiter, A.; Herrmann, C.; Schwab, F.; Selzer, M.; Nestler, B.
2018. Computational mechanics, 61 (3), 297. doi:10.1007/s00466-017-1485-1
Small strain multiphase-field model accounting for configurational forces and mechanical jump conditions
Schneider, D.; Schoof, E.; Tschukin, O.; Reiter, A.; Herrmann, C.; Schwab, F.; Selzer, M.; Nestler, B.
2018. Computational mechanics, 61 (3), 277–295. doi:10.1007/s00466-017-1458-4
The Impact of Pores on Microstructure Evolution: A Phase-Field Study of Pore-Grain Boundary Interaction
Rehn, V.; Hötzer, J.; Kellner, M.; Seiz, M.; Serr, C.; Rheinheimer, W.; Hoffmann, M. J.; Nestler, B.
2018. High Performance Computing in Science and Engineering ’ 17: Transactions of the High Performance Computing Center, Stuttgart (HLRS) 2017. Ed.: W. Nagel, 485–502, Springer International Publishing. doi:10.1007/978-3-319-68394-2_29
Effective Thermal Conductivity of Composite Materials Based on Open Cell Foams
August, A.; Reiter, A.; Kneer, A.; Selzer, M.; Nestler, B.
2018. Heat and Mass Transfer Research Journal, 2 (1), 33–45
Perspectives on material modelling: Porous and particle-based microstructures
Nestler, B.; August, A.; Selzer, M.; Hötzer, J.; Kellner, M.; Prajapati, N.; Rehn, V.; Seiz, M.
2018. Ceramic applications, 6 (1), 73–77
Phasenfeldsimulationen zur Mikrostrukturentwicklung während des Sinterprozesses
Hölzer, J.; Kellner, M.; Rehn, V.; Seiz, M.; Nestler, B.
2017. Forschung aktuell, 8–12
On the stress calculation within phase-field approaches : a model for finite deformations
Schneider, D.; Schwab, F.; Schoof, E.; Reiter, A.; Herrmann, C.; Selzer, M.; Böhlke, T.; Nestler, B.
2017. Computational mechanics, 60 (2), 203–217. doi:10.1007/s00466-017-1401-8
Evolution von Mikroporen in Kristallen mit hexagonaler Gitteranisotropie
Schneider, D.; Langerome, B.; Selzer, M.; Reiter, A.; Nestler, B.
2016. Forschung aktuell, 36–38
Easto-plastic phase-field model accounting for mechanical jump conditions during solid-state phase transformations
Schneider, D.; Schoof, E.; Reiter, A.; Selzer, M.; Nestler. B.
2016. The 22nd International Symposium on Plasticity and Its Current Applications, Sheraton Kona Resort & Spa Keauhou Bay, Hawaii, 3rd - 9th January 2016
Electric-field-induced lamellar to hexagonally perforated lamellar transition in diblock copolymer thin films: Kinetic pathways
Mukherjee, A.; Ankit, K.; Reiter, A.; Selzer, M.; Nestler, B.
2016. Physical chemistry, chemical physics, 18 (36), 25609–25620. doi:10.1039/c6cp04903f
Dynamische Lastverteilung auf einem HPC Framework mit nachrichtenbasierter Kommunikation
Heisler, C.; Hötzer, J.; Maier, M.; Reiter, A.; Selzer, M.; Nestler, B.
2015. Forschung aktuell, 2015, 16–18
Modellierung und Simulation der Starrkörperbewegung in Rückschlagventilen
Jainta, M.; Reiter, A.; August, A.; Moik, F.; Nestler, B.
2015. Forschung aktuell, 2015, 13–15