Dr. rer. nat. Christian Greiner

Research Focus

  •      „Materials Tribology“, focusing on the elementary mechanisms for the microstructure evolution under tribological loading
  •      High resolution electron and ion microscopy
  •      Contact mechanics; Bio-inspired materials


Characterization of the Microstructure After Composite Peening of Aluminum.
Seitz, M.; Dürrschnabel, M.; Kauffmann, A.; Kurpiers, C.; Greiner, C.; Weidenmann, K. A.
2021. Advanced engineering materials, 23 (2), Art.Nr. 2000575. doi:10.1002/adem.202000575
How Tribo-Oxidation Alters the Tribological Properties of Copper and Its Oxides.
Lehmann, J. S.; Schwaiger, R.; Rinke, M.; Greiner, C.
2021. Advanced materials interfaces, 8 (1), Art.-Nr.: 2001673. doi:10.1002/admi.202001673
High diffusivity pathways govern massively enhanced oxidation during tribological sliding.
Rau, J. S.; Balachandran, S.; Schneider, R.; Gumbsch, P.; Gault, B.; Greiner, C.
2021. Acta Materialia, 221, Art.-Nr.: 117353. doi:10.1016/j.actamat.2021.117353
Subsurface microstructural evolution during scratch testing on Bcc iron.
Linsler, D.; Ruebeling, F.; Greiner, C.
2021. Metals, 11 (8), 1258. doi:10.3390/met11081258
The Force Cone Method Applied to Explain Hidden Whirls in Tribology.
Mattheck, C.; Greiner, C.; Bethge, K.; Tesari, I.; Weber, K.
2021. Materials, 14 (14), Art.-Nr. 3894. doi:10.3390/ma14143894
Tribological Performance of Additively Manufactured AISI H13 Steel in Different Surface Conditions.
Guenther, E.; Kahlert, M.; Vollmer, M.; Niendorf, T.; Greiner, C.
2021. Materials, 14 (4), 928. doi:10.3390/ma14040928
On the origin of microstructural discontinuities in sliding contacts: A discrete dislocation plasticity analysis.
Xu, Y.; Ruebeling, F.; Balint, D.; Greiner, C.; Dini, D.
2021. International Journal of Plasticity, 138, Article no: 102942. doi:10.1016/j.ijplas.2021.102942
Variations in strain affect friction and microstructure evolution in copper under a reciprocating tribological load.
Becker, S.; Schulz, K.; Scherhaufer, D.; Gumbsch, P.; Greiner, C.
2021. Journal of Materials Research, 210. doi:10.1557/s43578-020-00050-z
Normal Load and Counter Body Size Influence the Initiation of Microstructural Discontinuities in Copper during Sliding.
Ruebeling, F.; Xu, Y.; Richter, G.; Dini, D.; Gumbsch, P.; Greiner, C.
2021. ACS applied materials & interfaces, 13 (3), 4750–4760. doi:10.1021/acsami.0c19736
Solid solution strengthening and deformation behavior of single-phase Cu-base alloys under tribological load.
Laube, S.; Kauffmann, A.; Ruebeling, F.; Freudenberger, J.; Heilmaier, M.; Greiner, C.
2020. Acta materialia, 185, 300–308. doi:10.1016/j.actamat.2019.12.005
Early deformation mechanisms in the shear affected region underneath a copper sliding contact.
Haug, C.; Ruebeling, F.; Kashiwar, A.; Gumbsch, P.; Kübel, C.; Greiner, C.
2020. Nature Communications, 11 (1), Art.-Nr. 839. doi:10.1038/s41467-020-14640-2
Variation of the frictional anisotropy on ventral scales of snakes caused by nanoscale steps.
Wu, W.; Yu, S.; Schreiber, P.; Dollmann, A.; Lutz, C.; Gomard, G.; Greiner, C.; Hölscher, H.
2020. Bioinspiration & biomimetics, 15 (5), Art.-Nr.: 056014. doi:10.1088/1748-3190/ab9e51
Site-Specific Controlled Growth of Coiled Lambda-Shaped Carbon Nanofibers for Potential Application in Catalyst Support and Nanoelectronics.
Lutz, C.; Bog, U.; Thelen, R.; Syurik, J.; Malik, S.; Greiner, C.; Hoelscher, H.; Hirtz, M.
2020. ACS applied nano materials. doi:10.1021/acsanm.0c01374
Microstructural changes in CoCrFeMnNi under mild tribological load.
Dollmann, A.; Kauffmann, A.; Heilmaier, M.; Haug, C.; Greiner, C.
2020. Journal of materials science, 55 (26), 12353–12372. doi:10.1007/s10853-020-04806-0
Solids Under Extreme Shear: Friction-Mediated Subsurface Structural Transformations.
Greiner, C.; Gagel, J.; Gumbsch, P.
2019. Advanced materials, 31 (26), Art.Nr.: 1806705. doi:10.1002/adma.201806705
Carbon Nanofibers: Locally Controlled Growth of Individual Lambda-Shaped Carbon Nanofibers.
Lutz, C.; Bog, U.; Loritz, T.; Syurik, J.; Malik, S.; Kumar, C. N. S.; Kübel, C.; Bruns, M.; Greiner, C.; Hirtz, M.; Hölscher, H.
2019. Small, 15 (7), 1970036. doi:10.1002/smll.201970036
Insights into tribology from in situ nanoscale experiments.
Jacobs, T. D. B.; Greiner, C.; Wahl, K. J.; Carpick, R. W.
2019. MRS bulletin, 44 (6), 478–486. doi:10.1557/mrs.2019.122
Locally Controlled Growth of Individual Lambda-Shaped Carbon Nanofibers.
Lutz, C.; Bog, U.; Loritz, T.; Syurik, J.; Malik, S.; Kumar, C. N. S.; Kübel, C.; Bruns, M.; Greiner, C.; Hirtz, M.; Hölscher, H.
2019. Small, Article no 1803944. doi:10.1002/smll.201803944
The origin of surface microstructure evolution in sliding friction.
Greiner, C.; Liu, Z.; Schneider, R.; Pastewka, L.; Gumbsch, P.
2018. Scripta materialia, 153, 63–67. doi:10.1016/j.scriptamat.2018.04.048
Glassomer-Processing Fused Silica Glass Like a Polymer.
Kotz, F.; Schneider, N.; Striegel, A.; Wolfschläger, A.; Keller, N.; Worgull, M.; Bauer, W.; Schild, D.; Milich, M.; Greiner, C.; Helmer, D.; Rapp, B. E.
2018. Advanced materials, 30 (22), 1707100. doi:10.1002/adma.201707100
Nanocomposites: Glassomer-Processing Fused Silica Glass Like a Polymer (Adv. Mater. 22/2018).
Kotz, F.; Schneider, N.; Striegel, A.; Wolfschläger, A.; Keller, N.; Worgull, M.; Bauer, W.; Schild, D.; Milich, M.; Greiner, C.; Helmer, D.; Rapp, B. E.
2018. Advanced materials, 30 (22), 1870151. doi:10.1002/adma.201870151
Friction reduction through biologically inspired scale-like laser surface textures.
Schneider, J.; Djamiykov, V.; Greiner, C.
2018. Beilstein journal of nanotechnology, 9, 2561–2572. doi:10.3762/bjnano.9.238
Characterization of the microscopic tribological properties of sandfish (Scincus scincus) scales by atomic force microscopy.
Wu, W.; Lutz, C.; Mersch, S.; Thelen, R.; Greiner, C.; Gomard, G.; Hölscher, H.
2018. Beilstein journal of nanotechnology, 9, 2618–2627. doi:10.3762/bjnano.9.243
Microstructure evolution and deformation mechanisms during high rate and cryogenic sliding of copper.
Chen, X.; Schneider, R.; Gumbsch, P.; Greiner, C.
2018. Acta materialia, 161, 138–149. doi:10.1016/j.actamat.2018.09.016
Stages in the tribologically-induced oxidation of high-purity copper.
Liu, Z.; Patzig, C.; Selle, S.; Höche, T.; Gumbsch, P.; Greiner, C.
2018. Scripta materialia, 153, 114–117. doi:10.1016/j.scriptamat.2018.05.008
Transparent, abrasion-insensitive superhydrophobic coatings for real-world applications.
Helmer, D.; Keller, N.; Kotz, F.; Stolz, F.; Greiner, C.; Nargang, T. M.; Sachsenheimer, K.; Rapp, B. E.
2017. Scientific reports, 7 (1), Art.Nr. 15078. doi:10.1038/s41598-017-15287-8
Sequence of Stages in the Microstructure Evolution in Copper under Mild Reciprocating Tribological Loading.
Greiner, C.; Liu, Z.; Strassberger, L.; Gumbsch, P.
2016. ACS applied materials & interfaces, 8 (24), 15809–15819. doi:10.1021/acsami.6b04035
A reciprocating optical in situ tribometer with high-speed data acquisition.
Becker, S.; Popp, U.; Greiner, C.
2016. Review of scientific instruments, 87 (8), 085101. doi:10.1063/1.4959883
Haften wie ein Gecko.
Greiner, C.; Hölscher, H.
2016. Physik in unserer Zeit, 47 (3), 116–122. doi:10.1002/piuz.201601422
Chronology of the microstructure evolution for pearlitic steel under unidirectional tribological loading.
Wolff, K.; Liu, Z.; Braun, D.; Schneider, J.; Greiner, C.
2016. Tribology international, 102, 540–545. doi:10.1016/j.triboint.2016.06.016
Liquid Glass: A Facile Soft Replication Method for Structuring Glass.
Kotz, F.; Plewa, K.; Bauer, W.; Schneider, N.; Keller, N.; Nargang, T.; Helmer, D.; Sachsenheimer, K.; Schäfer, M.; Worgull, M.; Greiner, C.; Richter, C.; Rapp, B.
2016. Advanced materials, 28 (23), 4646–4650. doi:10.1002/adma.201506089
Bio-inspired scale-like surface textures and their tribological properties.
Schaefer, M.; Greiner, C.
2015. Bioinspiration & biomimetics, 10 (4), Art.Nr.:044001. doi:10.1088/1748-3190/10/4/044001
Optimum dimple diameter for friction reduction with laser surface texturing: the effect of velocity gradient.
Greiner, C.; Merz, T.; Braun, D.; Codrignani, A.; Magagnato, F.
2015. Surface topography, 3 (4). doi:10.1088/2051-672X/3/4/044001
Study on micro texturing of uncoated cemented carbide cutting tools for wear improvement and built-up edge stabilisation.
Kümmel, J.; Braun, D.; Gibmeier, J.; Schneider, J.; Greiner, C.; Schulze, V.; Wanner, A.
2015. Journal of Materials Processing Technology, 215, 62–70. doi:10.1016/j.jmatprotec.2014.07.032
Contact Splitting and the Effect of Dimple Depth on Static Friction of Textured Surfaces.
Greiner, C.; Schäfer, M.; Popp, U.; Gumbsch, P.
2014. ACS Applied Materials & Interfaces, 6 (11), 7986–7990. doi:10.1021/am500879m
Efficiency of laser surface texturing in the reduction of friction under mixed lubrication.
Braun, D.; Greiner, C.; Schneider, J.; Gumbsch, P.
2014. Tribology International, 77, 142–147. doi:10.1016/j.triboint.2014.04.012
A Phase-Field Approach for Wetting Phenomena of Multiphase Droplets on Solid Surfaces.
Ben Said, M.; Selzer, M.; Nestler, B.; Braun, D.; Greiner, C.; Garcke, H.
2014. Langmuir, 30 (14), 4033–4039. doi:10.1021/la500312q
Controlling Nanoscale Friction through the Competition between Capillary Adsorption and Thermally Activated Sliding.
Greiner, C.; Felts, J. R.; Dai, Z.; King, W. P.; Carpick, R. W.
2012. ACS Nano, 6 (5), 4305–4313. doi:10.1021/nn300869w
Bioinspired fibrillar adhesives.
Boesel, L. F.; Greiner, C.; Arzt, E.; del Campo, A.
2010. Advanced materials, 22 (19), 2125–2137
Bio-inspired deposition of TiO2 thin films induced by hydrophobines.
Santhiya, D.; Burkhard, Z.; Greiner, C.; Juergens, L. P. H.; van Aken, P. A.; Bill, J.
2010. Langmuir, 26 (9), 6494–6502. doi:10.1021/la9039557
Temperature dependence of nanoscale friction investigated with thermal AFM probes.
Greiner, C.; Felts, J.; Dai, Z.; King, W. P.; Carpick, R. W.
2010. Mechanochemistry in materials science : November 30 - December 4, 2009, Boston, Massachussetts, USA, 13–20, Curran Associates, Inc
Local nanoscale heating modulates single-asperity friction.
Greiner, C.; Felts, J.; Dai, Z.; King, W. P.; Carpick, R. W.
2010. Nano Letters, 10 (11), 4640–4645. doi:10.1021/nl102809k
Adhesion design maps for fibrillar adhesives: The effect of shape.
Greiner, C.; Spolenak, R.; Arzt, E.
2009. Acta Biomaterialia, 5 (2), 597–606
Experimental Parameters Controlling Adhesion of Biomimetic Fibrillar Surfaces.
Greiner, C.; Buhl, S.; del Campo, A.; Arzt, E.
2009. The Journal of Adhesion, 85 (9), 646–661
Humidity influence on the adhesion of biomimetic fibrillar surfaces.
Buhl, S.; Greiner, C.; del Campo, A.; Arzt, E.
2009. The International Journal of Materials Research, 100 (8), 1119–1126
Hierarchical Gecko-Like Adhesives.
Greiner, C.; Arzt, E.; del Campo, A.
2009. Advanced Materials, 21 (4), 479–482
A Gecko-Inspired Reversible Adhesive.
Northern, M. T.; Greiner, C.; Arzt, E.; Turner, K. L.
2008. Advanced Materials, 20 (20), 3905–3909
Gecko-Inspired Nanomaterials.
Greiner, C.
2007. Bio-mimetic and Bio-inspired Nanomaterials for Life Sciences, Wiley-VCH Verlag. doi:10.1002/9783527610419.ntls0203
A hierarchical gecko-inspired switchable adhesive.
Northen, M. T.; Turner, K. L.; Greiner, C.; Arzt, E.
2007. Proceedings of the Hilton Head 2006 - A Solid State Sensors, Actuators and Microsystems Workshop, Hilton Head Island, SC, USA, June 4 - 8, 2006; 1 CD-Rom, 43–46, Transducer Research Foundation
Adhesion of Bioinspired Micropatterned Surfaces: Effects of Pillar Radius, Aspect Ratio, and Preload.
Greiner, C.; del Campo, A.; Arzt, E.
2007. Langmuir, 23 (7), 3495–3502
SU-8: A photoresist for high-aspect-ratio and 3D submicron lithography.
del Campo, A.; Greiner, C.
2007. Journal of Micromechanics and Microengineering, 17 (6), R81-R95
Designing model systems for enhanced adhesion.
Chan, E. P.; Greiner, C.; Arzt, E.; Crosby, A. J.
2007. MRS Bulletin, 32 (6), 496–503
Patterned Surfaces with Pillars with Controlled 3D Tip Geometry Mimicking Bioattachment Devices.
del Campo, A.; Greiner, C.; Alvarez, I.; Arzt, E.
2007. Advanced Materials, 19 (15), 1973–1977
Contact Shape Controls Adhesion of Bioinspired Fibrillar Surfaces.
del Campo, A.; Greiner, C.; Arzt, E.
2007. Langmuir, 23 (20), 10235–10243
Polymeric structured surfaces for adhesion enhancement.
Greiner, C.; Arzt, E.; del Campo, A.
2006. Proceedings of the 29th Annual Meeting of the Adhesion Society, Inc., Jacksonville, Florida, USA, February 19 - 22, 2006. Ed.: Gregory Anderson, 319–338, Adhesion Society
High strength, low stiffness, porous NiTi with superelastic properties.
Greiner, C.; Oppenheimer, S. M.; Dunand, D. C.
2005. Acta Biomaterialia, 1 (6), 705–716
Titel Autor Quelle

ACS Nano, Band 6, Seiten 4305-4313

Nano Letters, 10 (11) 4640-4645 (2010)

Mater. Res. Soc. Symp. Proc. Vol. 1226, 1226-II05-02 (2010)

Langmuir, 26 (9), 6494-6502 (2010)

Advanced Materials, 22 (19), 2125-2137 (2010)

Advanced Materials, 21 (4), 479-482 (2009)

The International Journal of Materials Research, 100 (8) 1119-1126 (2009)

The Journal of Adhesion, 85 (9), 646-661 (2009)

Acta Biomaterialia, 5 (2), 597-606 (2009)

Advanced Materials, 20 (20), 3905-3909 (2008)

Langmuir, 23 (20), 10235-10243 (2007)

Advanced Materials, 19(15), 1973-1977 (2007)

MRS Bulletin, 32 (6), 496-503 (2007)

Journal of Micromechanics and Microengineering, 17(6), R81-R95 (2007)

Langmuir, 23 (7), 3495-3502 (2007)

Proceedings of the 29th Annual Meeting of The Adhesion Society, (Jacksonville, Florida), p. 318 (2006)

A Solid-State Sensor, Actuator, and Microsystems Workshop, (Hilton Head, SC), pp. 43-46 (2006)

Acta Biomaterialia, 1 (6), 705-716 (2005)

Titel Quelle

book series Nanomaterials for the Life Sciences, volume 7, Bio-mimetic and Bio-inspired Nanomaterials for Life Sciences published by Wiley-VCH

Weitere Informationen zur Nachwuchsgruppe hier