Master's Thesis Project Available

Investigation of SEI Formation at the Li/Solid Electrolyte Interface Using *Operando* X-ray Photoelectron Spectroscopy (XPS)

Introduction

The shift toward electrified transportation calls for safer, higher-performance energy storage. Solid electrolytes compatible with lithium-metal anodes not only improve safety but also offer the potential to surpass the energy density of current Li-ion batteries.

A key challenge in developing next-generation all-solid-state lithium-metal batteries (Gen4) lies in identifying solid electrolytes that combine high ionic conductivity with a wide electrochemical stability window. Advancing these materials requires a deep understanding of degradation mechanisms at the Li/electrolyte interface and the nature of the solid electrolyte interphase (SEI).

Project Objectives

This project aims to explore SEI formation and evolution at the Li/solid electrolyte interface using *operando* X-ray Photoelectron Spectroscopy (XPS)—a non-destructive method that enables real-time monitoring during lithium plating and stripping [1]. The goal is to develop and apply *operando* techniques to track SEI growth and stability across cycles, providing insights essential for improving solid-state battery performance and durability.

What You'll Gain

By participating in this project, you will:

- Gain hands-on experience with advanced surface analysis techniques
- Develop in-depth knowledge of battery materials and interfacial chemistry
- Contribute to innovative research in next-generation energy storage

Interested?

We welcome motivated candidates to apply. Please send your application to: raheleh.azmi@kit.edu

Relevant Literature

 S. Narayanan, U. Ulissi, J. S. Gibson, Y. A. Chart, R. S. Weatherup, and M. Pasta, "Effect of current density on the solid electrolyte interphase formation at the lithium|Li6PS5Cl interface," *Nat Commun*, vol. 13, no. 1, Dec. 2022, doi: 10.1038/s41467-022-34855-9.