

Karlsruhe Institute of Technology

Institute for Applied Materials

Quantification of twinning stress of CoCrFeNiMn high entropy alloy by in situ micropillar compression

Camila A. Teixeira, Subin Lee and Christoph Kirchlechner

Motivation and methodology

- Equiatomic CoCrFeMnNi high entropy alloy (HEA) exhibits an outstanding combination of mechanical properties, under cryogenic temperatures, attributed to deformation twinning;
- In-depth understanding of twinning as a deformation mechanism in HEAs;
- Develop protocols to measure twinning stress by applying uniaxial in situ micropillar compression.

Fig. 1 – Post mortem SEM images of [9 6 11] orientation pillars of diameter: 1.0 (a), 0.5 (b) and 0.3 µm (c). Representative engineering stress and strain curves (d).

[2] G. Laplanche et al./ Acta Materialia 118 (2016) 152-163.

STEM and TKD analyses

(e) 100 nm 100 nm

Fig. 4 – STEM images (b) for [9 6 11] orientation pillar of diameter 0.3 µm (a). Setbacks testing 130 nm diameter samples (c). TKD analyses IPF Z (e) for a [8 3 10] orientation pillar of diameter 130 nm (d).

Take home message

Post mortem STEM and TKD analyses were performed to verify if twin microstructure could be observed;

- alloy and Dc of 188 nm;
- Pillars smaller than the Dc for twinning were tested and literature critical twinning stress achieved, however no twinning could be observed.
- Tests with a different micromechanical geometry (cantilever) will also be conducted to verify if twinning would occur in these conditions.

Camila Aguiar Teixeira camila.teixeira@kit.edu Christoph Kirchlechner christoph.kirchlechner@kit.edu

