Home | Impressum | Datenschutz | Sitemap | KIT
C. Brandl

Dr. Christian Brandl

IAM-WBM Werkstoffmechanik 1 (WM1) / Department of Mechanical Engineering | Melbourne School of Engineering
Tel.: +61 3 8344 5331 (University of Melbourne)
christian brandlRvd9∂unimelb edu au

Former KIT Young Investigator Group
“Computational Nanomechanics of Materials”

 

Christian Brandl | Senior Lecturer

Department of Mechanical Engineering | Melbourne School of Engineering

D408, Engineering Block D, Parkville

The University of Melbourne, Victoria 3010 Australia

T: +61 3 8344 5331

E: christian.brandl@unimelb.edu.au

 

Twitter-Profil: @nanoSimMat



Education

Dr. sc., École Polytechnique Fédérale de Lausanne (EPFL), Materials Science & Engineering; 2010
Dipl.-Ing., Universität Karlsruhe, Mechanical Engineering; 2006
Dipl.-Ing. (BA), Duale Hochschule Baden-Württemberg (DHBW) Mannheim, Mechanical Engineering; 2001 

Research area

“The Mechanics of Microstructures”
Simulation methods: Molecular dynamics, ab-initio simulation, Monte Carlo, mesoscale & continuum approaches, high performance computing (HPC)
Materials: Nanoscale materials (nanocrystalline, nanolayered, nanoparticle, nanowire), metals & alloys, metallic composites
Aspects: Strength, ductility and failure of materials
Defect structure and dynamics
Solid-state reactions
Materials design through functional defects

Background

 Since 2016  KIT Young Investigator Group Leader “Computational Nanomechanics of Materials”
 Since 2013  Scientist at the Institute for Applied Materials, Karlsruhe Institute of Technology
 2013-2015  Visting Scientist at the Los Alamos National Laboratory
 2010-2013  PostDoc in the Theoretical Division, Los Alamos National Laboratory
 2006-2010  Ph.D. student at the Paul Scherrer Institute

Selected Publications

  • C. Ensslen, C. Brandl, G. Richter, R. Schwaiger, O. Kraft, Notch insensitive strength and ductility in gold nanowires, Acta Mater. 108 (2016) 317–324. doi:10.1016/j.actamat.2016.02.015.
  • A. Kobler, C. Brandl, H. Hahn, C. Kübel, In situ observation of deformation processes in nanocrystalline face-centered cubic metals, Beilstein J. Nanotechnol. 7 (2016) 572–580. doi:10.3762/bjnano.7.50.
  • S.J. Fensin, J.P. Escobedo-Diaz, C. Brandl, E.K. Cerreta, G.T. Gray, T.C. Germann, et al., Effect of loading direction on grain boundary failure under shock loading, Acta Mater. 64 (2014) 113–122. doi:10.1016/j.actamat.2013.11.026.
  • C. Brandl, T.C. Germann, A. Misra, Structure and shear deformation of metallic crystalline-amorphous interfaces, Acta Mater. 61 (2013) 3600–3611. doi:10.1016/j.actamat.2013.02.047.
  • C. Brandl, T.C. Germann, A.G. Perez-Bergquist, E.K. Cerreta, Grain Boundary Motion under Dynamic Loading: Mechanism and Large-Scale Molecular Dynamics Simulations, Mater. Res. Lett. 1 (2013) 220–227. doi:10.1080/21663831.2013.830993.
  • S.J. Fensin, C. Brandl, E.K. Cerreta, G.T. Gray, T.C. Germann, S.M. Valone, Nanoscale Plasticity at Grain Boundaries in Face-centered Cubic Copper Under Shock Loading, JOM. 65 (2013) 410–418. doi:10.1007/s11837-012-0546-3.
  • E.K. Cerreta, J.P. Escobedo, A. Perez-Bergquist, D.D. Koller, C.P. Trujillo, G.T. Gray III, et al., Early stage dynamic damage and the role of grain boundary type, Scr. Mater. 66 (2012) 638–641. doi:10.1016/j.scriptamat.2012.01.051.
  • A.G. Perez-Bergquist, E.K. Cerreta, C.P. Trujillo, G.T. Gray, C. Brandl, T.C. Germann, Transmission electron microscopy study of the role of interface structure at 100/111 boundaries in a shocked copper multicrystal, Scr. Mater. 67 (2012) 412–415. doi:10.1016/j.scriptamat.2012.05.035.
  • B. Arman, C. Brandl, S.N. Luo, T.C. Germann, A. Misra, T. Cagin, Plasticity in Cu(111)/Cu46Zr54 glass nanolaminates under uniaxial compression, J. Appl. Phys. 110 (2011) 043539. doi:10.1063/1.3627163.
  • C. Brandl, P.M. Derlet, H. Van Swygenhoven, Dislocation mediated plasticity in nanocrystalline Al: the strongest size, Model. Simul. Mater. Sci. Eng. 19 (2011) 074005. doi:10.1088/0965-0393/19/7/074005.
  • M. Velasco, H. Van Swygenhoven, C. Brandl, Coupled grain boundary motion in a nanocrystalline grain boundary network, Scr. Mater. 65 (2011) 151–154. doi:10.1016/j.scriptamat.2011.03.039.
  • C. Brandl, S. Tiwari, P.M. Derlet, H. Van Swygenhoven, Athermal critical stresses for dislocation propagation in nanocrystalline aluminium, Philos. Mag. 90 (2010) 977–989. doi:10.1080/14786430903124444.
  • E. Bitzek, C. Brandl, D. Weygand, P.M. Derlet, H. Van Swygenhoven, Atomistic simulation of a dislocation shear loop interacting with grain boundaries in nanocrystalline aluminium, Model. Simul. Mater. Sci. Eng. 17 (2009) 055008. doi:10.1088/0965-0393/17/5/055008.
  • C. Brandl, P.M. Derlet, H. Van Swygenhoven, Strain rates in molecular dynamics simulations of nanocrystalline metals, Philos. Mag. 89 (2009) 3465–3475. doi:10.1080/14786430903313690.
  • E. Bitzek, C. Brandl, P. Derlet, H. Van Swygenhoven, Dislocation Cross-Slip in Nanocrystalline fcc Metals, Phys. Rev. Lett. 100 (2008) 235501. doi:10.1103/PhysRevLett.100.235501.
  • C. Brandl, P.M. Derlet, H. Van Swygenhoven, General-stacking-fault energies in highly strained metallic environments: Ab initio calculations, Phys. Rev. B. 76 (2007) 054124. doi:10.1103/PhysRevB.76.054124.
  • C. Brandl, E. Bitzek, P.M. Derlet, H. Van Swygenhoven, Slip transfer through a general high angle grain boundary in nanocrystalline aluminum, Appl. Phys. Lett. 91 (2007) 111914. doi:10.1063/1.2784939.