

Phase Transformations in Materials

Lecture for "Mechanical Engineering" and "Materials Science and Engineering" Dr.-Ing. Alexander Kauffmann (Bldg. 10.91, R. 375) Dr. Sandipan Sen (Bldg. 10.91, R. 311)

Version 23-08-28

KIT – The Research University in the Helmholtz Association

www.kit.edu

- Thermodynamic Fundamentals
 - Component and Phase
 - Position Dependence of Properties P = P(x)
 - Direction Dependence of Properties P_{klmn...}
 - Quantities T, S; p, V; μ_i , N_i ; σ_{kl} , ε_{kl} ; E_k , D_k ; H_k , B_k
 - Composition, Concentration and Phase Fraction $x_i, w_i, c_i, x_i^j, w_i^j, x^j, w^j, v^j$
 - Thermodynamic Potentials U, F, H, G and dU, dF, dH, dG
 - Thermodynamic Equilibrium
 - Stability: Stable, Metastable and Unstable
 - Driving Force
 - General Considerations on the Temperature Dependence of G

Kinetic fundamentals

- General Considerations
- Diffusion
 - Phenomenological Description
 - Fick's Laws
 - Generalization
 - Simple Solutions of Fick's 2nd Law
 - Microscopic Considerations

Overview about Phase Transformations

- General Aspects and Considerations
- Schemes

Experimental techniques

General Terms

- Structural Investigations
- Physical Investigations
- Chemical Investigations
- Microstructural Investigations

- Single-Component Systems
 - Solidification and Allotropic Transformations (Discontinuous)
 - Temperature-Dependent Thermodynamic Potentials
 - Driving Force and Latent Heat
 - Nucleation
 - Temperature and Time Dependence
 - Homogeneous vs. Heterogeneous
 - Growth
 - Surface/Interface Energy
 - Growth Velocity
 - Temperature Distribution (Heat Dissipation)
 - Continuous Phase Transitions
 - Concept of Order Parameter
 - Landau Formalism: Taylor Series of Thermodynamic Potentials

Multi-Component Systems

Reconstructive Transformation

(changes are achieved by long-range diffusion)

- Spinodal Decomposition (change in composition, not in crystal structure)
- Precipitation (change in composition and crystal structure from one parent phase into a two-phase microstructure)
 - Continuous
 - Discontinuous
- Eutectic Reaction (invariant reaction with change in composition and crystal structure resulting in a two-phase microstructure)
- Peritectic Reaction (invariant reaction with change in composition and crystal structure from two parent phases to a single phase)

- Multi-Component Systems
 - Displacive Transformation

(no long-range diffusion and changes in crystal structure are achieved by deformation)

- Shear transformation
- Dilation transformation
- Transformation by shuffling
- Intermediate transitions
 - (no long-range diffusion)
 - Order Transition (symmetry break in crystal structure by resembling site occupation, no change in total composition)
 - Massive Transformation (change in crystal structure without change in total composition)

