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Phase Transformations in Materials

General Considerations

Apart from the thermodynamic driving force of a process to occur, the process evolution as a 
function of time is needed to be investigated.

In some cases, the changes driven by the driving force might occur
instantaneous, e.g. electric and magnetic changes
quasi-instantaneous, e.g. elastic and plastic deformation
(due to mediation by lattice deformations/phonons somehow at a speed similar to the speeds of sound in 
solids)
rather slow, when transport of mass is associated with the change, e.g. diffusion and convection (different 
from some treatment in the anglo-saxonian where both is sometimes considered the same)

For the first two cases, the thermodynamic driving forces might be sufficient to describe phase 
transformations. For the latter case, transport phenomena are rate controlling and need to be 
investigated to see whether a transformation can occur at all and how it occurs.
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Phase Transformations in Materials

Diffusion

Diffusion is the process of usually complete mixing without any external force caused by 
thermally induced Brown motion of atoms and molecules.
Similar to the treatment of thermodynamics in Ch. 1a,
(i) a phenomenological treatment of the subject but
(ii) also a statistical treatment of the particle motion
exist. Since the following considerations are seen as tools for the assessment of phase 
transformations, the use will be application-oriented and strict differentiation is not of interest.
For the present lecture, diffusion in liquids and solids are of particular interest. Both 
significantly depend on temperature and are progressing rather slow.
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Phase Transformations in Materials

Phenomenological: Fick’s 1st Law

The simplest approximation of the process of mixing is that a flux exists that is in opposite direction to 
concentration gradients (Fick’s 1st  law):

𝑗𝑗 = −𝐷𝐷 �
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕𝑐𝑐

𝑥𝑥

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

𝑗𝑗

𝑡𝑡 = 0

𝑡𝑡 > 0
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Phase Transformations in Materials

Phenomenological: Fick’s 1st law

As pointed out in Ch. 1a, concentrations are considered as volumetric particle densities 𝑐𝑐 = mol
m3

in this case. This is not necessarily the same as a composition description given by 𝑥𝑥𝑖𝑖, 𝑥𝑥𝑖𝑖
𝑗𝑗, 𝑤𝑤𝑖𝑖

and 𝑤𝑤𝑖𝑖
𝑗𝑗!

This allows for proper formulation of continuity in the second step. Hence, 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= mol
m4 . The flux is 

given as an area-specific particle flux 𝑗𝑗 = mol
m2 s

.

The proportionality is mediated by the material’s constant 𝐷𝐷 with 𝐷𝐷 = m2

s
.

The flux described by Fick’s 1st  law equilibrates concentration gradients and leads to mixing.
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Phase Transformations in Materials

Phenomenological: Continuity

In order to describe the temporal evolution, continuity of the process needs to be considered:
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= 0

Continuity in this case means that the accumulation or loss rate of particles 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

is balanced by the difference 

of incoming and outgoing fluxes to a small volume 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

. There are no sources or sinks of species nor 
reactions of species considered.

𝑗𝑗− 𝑗𝑗+
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

small volume
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Phase Transformations in Materials

Phenomenological: Fick’s 2nd Law

A linear, second-order partial differential equation for the spatial and temporal evolution of 
𝑐𝑐(𝑥𝑥, 𝑡𝑡) is obtained by combining both, Fick’s 1st law and the continuity equation (Fick’s 2nd law):

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= 𝐷𝐷 �
𝜕𝜕2𝑐𝑐
𝜕𝜕𝜕𝜕2
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Phase Transformations in Materials

Phenomenological: Generalization

The problem can be generalized to more complex cases:

multidimensional:

𝒋𝒋 = −𝐷𝐷 � 𝛁𝛁𝑐𝑐

𝑗𝑗𝑘𝑘 = −𝐷𝐷 �
𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥𝑘𝑘

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= 𝐷𝐷 � ∆𝑐𝑐

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= 𝐷𝐷 ��
𝑘𝑘

𝜕𝜕2𝑐𝑐
𝜕𝜕𝜕𝜕𝑘𝑘2

The flux becomes a direction-depending 
vector quantity determined by the vector 
gradient.
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Phase Transformations in Materials

Phenomenological: Generalization

The problem can be generalized to more complex cases:

multidimensional:
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= 𝐷𝐷 � ∆𝑐𝑐
reads:

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= 𝐷𝐷 � 𝜕𝜕2𝑐𝑐
𝜕𝜕𝜕𝜕2

+ 𝜕𝜕2𝑐𝑐
𝜕𝜕𝑦𝑦2

+ 𝜕𝜕2𝑐𝑐
𝜕𝜕𝑧𝑧2

for Cartesian coordinates 𝑥𝑥,𝑦𝑦, 𝑧𝑧

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= 𝐷𝐷
𝑟𝑟
� 𝜕𝜕

𝜕𝜕𝑟𝑟
𝑟𝑟 𝜕𝜕𝑐𝑐
𝜕𝜕𝜕𝜕

+ 𝜕𝜕
𝜕𝜕𝛩𝛩

1
𝑟𝑟
𝜕𝜕𝜕𝜕
𝜕𝜕𝛩𝛩

+ 𝜕𝜕
𝜕𝜕𝑧𝑧

𝑟𝑟 𝜕𝜕𝜕𝜕
𝜕𝜕𝑧𝑧

for cylindrical coordinates 𝑟𝑟,𝛩𝛩, 𝑧𝑧

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= 𝐷𝐷 � 𝜕𝜕2𝑐𝑐
𝜕𝜕𝑟𝑟2

+ 2
𝑟𝑟
𝜕𝜕𝜕𝜕
𝜕𝜕𝑟𝑟

+ 1
𝑟𝑟2 sin2 𝛩𝛩

𝜕𝜕2𝑐𝑐
𝜕𝜕𝜑𝜑2

+ 1
𝑟𝑟2

𝜕𝜕2𝑐𝑐
𝜕𝜕𝛩𝛩2

+ cot 𝛩𝛩
𝑟𝑟2

𝜕𝜕𝜕𝜕
𝜕𝜕𝛩𝛩

for spherical coordinates 𝑟𝑟,𝜑𝜑,𝛩𝛩
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Phase Transformations in Materials

Phenomenological: Generalization

The problem can be generalized to more complex cases:

multidimensional:
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= 𝐷𝐷 � ∆𝑐𝑐

𝑥𝑥

𝑦𝑦

𝑧𝑧

𝑧𝑧

𝑟𝑟
𝛩𝛩

𝑟𝑟

𝜑𝜑

𝛩𝛩

Cartesian 
coordinates 

𝑥𝑥,𝑦𝑦, 𝑧𝑧

Cylindrical 
coordinates 

𝑟𝑟,𝛩𝛩, 𝑧𝑧

Spherical 
coordinates 

𝑟𝑟,𝜑𝜑,𝛩𝛩
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Phase Transformations in Materials

Phenomenological: Generalization

The problem can be generalized to more complex treatment:

multidimensional, anisotropic:

𝒋𝒋 = −𝑫𝑫 � 𝛁𝛁𝑐𝑐

𝑗𝑗𝑘𝑘 = −𝐷𝐷𝑘𝑘𝑘𝑘 �
𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥𝑙𝑙

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= 𝑫𝑫 � ∆𝑐𝑐

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= 𝐷𝐷𝑘𝑘𝑘𝑘 �
𝜕𝜕2𝑐𝑐

𝜕𝜕𝑥𝑥𝑘𝑘 𝜕𝜕𝑥𝑥𝑙𝑙

In case of anisotropic diffusion, the 
diffusion coefficient becomes a tensor of 
rank two connecting the two vector 
quantities 𝒋𝒋 and 𝛁𝛁𝑐𝑐.
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Phase Transformations in Materials

Phenomenological: Generalization

The problem can be generalized to more complex treatment:

non-linear:

𝒋𝒋 = −𝐷𝐷 𝑐𝑐 � 𝛁𝛁𝑐𝑐

𝑗𝑗𝑘𝑘 = −𝐷𝐷 𝑐𝑐 �
𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥𝑘𝑘

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= 𝛁𝛁𝐷𝐷 𝑐𝑐 � 𝛁𝛁𝑐𝑐
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

=
𝜕𝜕
𝜕𝜕𝑥𝑥𝑘𝑘

𝐷𝐷 𝑐𝑐 �
𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥𝑘𝑘

In most cases, the diffusion coefficient is 
depending on concentration, making the 
equations non-linear.
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Phase Transformations in Materials

Phenomenological: Generalization

The problem can be generalized to more complex treatment:

non-linear:

𝒋𝒋 = −𝐷𝐷 𝒙𝒙 � 𝛁𝛁𝑐𝑐

𝑗𝑗𝑘𝑘 = −𝐷𝐷 𝒙𝒙 �
𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥𝑘𝑘

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= 𝛁𝛁𝐷𝐷 𝒙𝒙 � 𝛁𝛁𝑐𝑐
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

=
𝜕𝜕
𝜕𝜕𝑥𝑥𝑘𝑘

𝐷𝐷 𝒙𝒙 �
𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥𝑘𝑘

Similarly, heterogeneous materials will 
have position-depending diffusion-
coefficients.
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Phase Transformations in Materials

Phenomenological: Generalization

Some notes on the equations:
Multi-component systems require a treatment of all the species in the system.
The concept of flux and continuity is very general and can be applied in many different 
disciplines, e.g. heat conduction, fluid dynamics, drift (diffusion) currents in semi-conductors, 
etc. Hence, the equations and/or their solutions are of general interest in engineering or 
science.
In some cases, mixing might lead to an increase of the thermodynamic potential (Gibbs free 
energy 𝐺𝐺) when preferred interactions of species are present. “Up-hill” in instead of “down-
hill” diffusion might occur in these cases and specific types of concentration gradients can 
built up and grow, for example during spinodal decomposition. Slight modifications to the 
diffusion equations can account for this. Nevertheless, most diffusion-controlled phase 
transformations are rate-controlled by “down-hill” diffusion even though decomposition of the 
material occurs! It’s just a matter of representation and identification of the respective 
gradients.
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Phase Transformations in Materials

Phenomenological: Some Selected Solutions

Under specific boundary and initial conditions, solutions of the diffusion equation can be obtain. 
Some simple solutions are useful to further assess more complex diffusion processes:

Steady-state diffusion 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= 0, linear one-dimensional:

𝜕𝜕2𝑐𝑐
𝜕𝜕𝜕𝜕2

= 0

𝑐𝑐 𝑥𝑥 = 𝑐𝑐0 + 𝑘𝑘 𝑥𝑥

16



Phase Transformations in Materials

Phenomenological: Some Selected Solutions

𝑥𝑥

𝑐𝑐 𝑥𝑥 = 𝑐𝑐0 + 𝑘𝑘 𝑥𝑥

for any time 𝑡𝑡

𝑐𝑐
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Phase Transformations in Materials

Phenomenological: Some Selected Solutions

Under specific boundary and initial conditions, solutions of the diffusion equation can be obtain. 
Some simple solutions are useful to further assess more complex diffusion processes:

Steady-state diffusion 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= 0, spherical:

𝜕𝜕
𝜕𝜕𝜕𝜕

𝑟𝑟2
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= 0

𝑐𝑐 𝑟𝑟 = 𝑐𝑐0 +
𝑘𝑘
𝑟𝑟
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Phase Transformations in Materials

Phenomenological: Some Selected Solutions

𝑟𝑟

𝑐𝑐 𝑟𝑟 = 𝑐𝑐0 +
𝑘𝑘
𝑟𝑟

for any time 𝑡𝑡

𝑐𝑐
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Phase Transformations in Materials

Phenomenological: Some Selected Solutions

Under specific boundary and initial conditions, solutions of the diffusion equation can be obtain. 
Some simple solutions are useful to further assess more complex diffusion processes:

Dissolution of a planar source:
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= 𝐷𝐷 �
𝜕𝜕2𝑐𝑐
𝜕𝜕𝜕𝜕2

with 𝑐𝑐 𝑥𝑥, 𝑡𝑡 = 0 = 𝑀𝑀 𝛿𝛿(𝑥𝑥)

𝑐𝑐 𝑥𝑥, 𝑡𝑡 =
𝑀𝑀

2 𝜋𝜋 𝐷𝐷 𝑡𝑡
exp −

𝑥𝑥2

4 𝐷𝐷 𝑡𝑡
when diffusion in positive and negative 𝑥𝑥 direction is allowed.

The solution for diffusion in only one direction is the same but the factor 2 is missing.

20



Phase Transformations in Materials

-3 -2 -1 0 1 2 3
0.0

0.5

1.0

1.5

Phenomenological: Some Selected Solutions

𝑥𝑥
𝐷𝐷𝐷𝐷

𝑐𝑐 𝑥𝑥, 𝑡𝑡 = 0
𝑀𝑀 = 𝛿𝛿(𝑥𝑥)

2 𝐷𝐷𝐷𝐷 = 0.25

2 𝐷𝐷𝐷𝐷 = 0.5

2 𝐷𝐷𝐷𝐷 = 1
2 𝐷𝐷𝐷𝐷 = 2

Note that the number of particles 
per unit area remains constant for 
any time 𝑡𝑡: ∫−∞

+∞ 𝑐𝑐 𝑥𝑥, 𝑡𝑡 d𝑥𝑥 = 𝑀𝑀.

𝑐𝑐 𝑥𝑥, 𝑡𝑡 → ∞ → 0

𝑐𝑐
𝑀𝑀
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Phase Transformations in Materials

Phenomenological: Some Selected Solutions

Under specific boundary and initial conditions, solutions of the diffusion equation can be obtain. 
Some simple solutions are useful to further assess more complex diffusion processes:

Diffusion couple:

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= 𝐷𝐷 �
𝜕𝜕2𝑐𝑐
𝜕𝜕𝜕𝜕2

with 𝑐𝑐 𝑥𝑥 < 0, 𝑡𝑡 = 0 = 𝑐𝑐1 and 𝑐𝑐 𝑥𝑥 > 0, 𝑡𝑡 = 0 = 𝑐𝑐2

𝑐𝑐 𝑥𝑥, 𝑡𝑡 = 𝑐𝑐1 +
𝑐𝑐2 − 𝑐𝑐1

2
erfc −

𝑥𝑥
2 𝐷𝐷 𝑡𝑡
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Phase Transformations in Materials

Phenomenological: Some Selected Solutions

erf 𝑧𝑧 =
2
𝜋𝜋
�
0

𝑧𝑧
exp −𝜂𝜂2 d𝜂𝜂 erfc 𝑧𝑧 = 1 − erf 𝑧𝑧

-3 -2 -1 0 1 2 3
-1.0

-0.5

0.0

0.5

1.0

-3 -2 -1 0 1 2 3
0.0

0.5

1.0

1.5

2.0
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Phase Transformations in Materials

-3 -2 -1 0 1 2 3
0.0

0.5

1.0

Phenomenological: Some Selected Solutions
𝑐𝑐 𝑥𝑥, 𝑡𝑡 = 0 = �𝑐𝑐2, 𝑥𝑥 > 0

𝑐𝑐1, 𝑥𝑥 < 0 𝐷𝐷𝐷𝐷 = 0.25
𝐷𝐷𝐷𝐷 = 0.5
𝐷𝐷𝐷𝐷 = 1
𝐷𝐷𝐷𝐷 = 2

𝑐𝑐 𝑥𝑥, 𝑡𝑡 → ∞ =
𝑐𝑐1 + 𝑐𝑐2

2

𝑥𝑥

𝑐𝑐 − 𝑐𝑐1
𝑐𝑐2 − 𝑐𝑐1
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Phase Transformations in Materials

-3 -2 -1 0 1 2 3
0.0

0.5

1.0

Phenomenological: Some Selected Solutions

Diffusion is often assessed based on 
characteristic lengths, for example �𝑥𝑥 =
2 𝐷𝐷 𝑡𝑡. The concentration at these 
positions 𝑐̃𝑐 = 𝑐𝑐 𝑥𝑥 = ∓�𝑥𝑥, 𝑡𝑡 remains 
constant:
𝑐𝑐 𝑥𝑥 = ∓�𝑥𝑥, 𝑡𝑡 = 𝑐𝑐1 +

𝑐𝑐2 − 𝑐𝑐1
2 erfc ±1

with
erfc 1 ≈ 0.16, erfc −1 ≈ 1.84

𝑐𝑐 − 𝑐𝑐1
𝑐𝑐2 − 𝑐𝑐1

𝑥𝑥
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Phase Transformations in Materials

Phenomenological: Some Selected Solutions

Under specific boundary and initial conditions, solutions of the diffusion equation can be obtain. 
Some simple solutions are useful to further assess more complex diffusion processes:

Constant supply on the surface:

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= 𝐷𝐷 �
𝜕𝜕2𝑐𝑐
𝜕𝜕𝜕𝜕2

with 𝑐𝑐 𝑥𝑥 = 0, 𝑡𝑡 = 𝑐𝑐0 und 𝑐𝑐 𝑥𝑥 > 0, 𝑡𝑡 = 0 = 0

𝑐𝑐 𝑥𝑥, 𝑡𝑡 = 𝑐𝑐0 erfc
𝑥𝑥

2 𝐷𝐷 𝑡𝑡
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Phase Transformations in Materials

0 1 2 3
0.0

0.5

1.0

Phenomenological: Some Selected Solutions
𝑐𝑐
𝑐𝑐0

𝑐𝑐 𝑥𝑥 = 0, 𝑡𝑡 = 0 = 𝑐𝑐0,
𝑐𝑐 𝑥𝑥 > 0, 𝑡𝑡 = 0 = 0

𝐷𝐷𝐷𝐷 = 2

𝑐𝑐 𝑥𝑥, 𝑡𝑡 → ∞ = 𝑐𝑐0

𝐷𝐷𝐷𝐷 = 0.25

𝐷𝐷𝐷𝐷 = 0.5

𝐷𝐷𝐷𝐷 = 1

𝑥𝑥
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Phase Transformations in Materials

0 1 2 3
0.0

0.5

1.0

Phenomenological: Some Selected Solutions
𝑐𝑐
𝑐𝑐0

�𝑥𝑥 = 2 𝐷𝐷 𝑡𝑡 with
𝑐̃𝑐 = 𝑐𝑐 𝑥𝑥 = �𝑥𝑥, 𝑡𝑡 = 𝑐𝑐0 erfc 1 ≈ 0.16 𝑐𝑐0

𝑥𝑥
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Phase Transformations in Materials

Phenomenological: Some Selected Solutions

Under specific boundary and initial conditions, solutions of the diffusion equation can be obtain. 
Some simple solutions are useful to further assess more complex diffusion processes:

Slab dissolution:

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= 𝐷𝐷 �
𝜕𝜕2𝑐𝑐
𝜕𝜕𝜕𝜕2

with 𝑐𝑐 −ℎ < 𝑥𝑥 < ℎ, 𝑡𝑡 = 0 = 𝑐𝑐0 und 𝑐𝑐 𝑥𝑥 < −ℎ ∨ 𝑥𝑥 > ℎ, 𝑡𝑡 = 0 = 0

𝑐𝑐 𝑥𝑥, 𝑡𝑡 =
𝑐𝑐0
2

erf
𝑥𝑥 + ℎ
2 𝐷𝐷 𝑡𝑡

− erf
𝑥𝑥 − ℎ
2 𝐷𝐷 𝑡𝑡

29



Phase Transformations in Materials

-3 -2 -1 0 1 2 3
0.0

0.5

1.0

Phenomenological: Some Selected Solutions
𝑐𝑐
𝑐𝑐0

𝑐𝑐 −ℎ < 𝑥𝑥 < ℎ, 𝑡𝑡 = 0 = 𝑐𝑐0

𝐷𝐷𝐷𝐷 = 2

𝑐𝑐 𝑥𝑥, 𝑡𝑡 → ∞ = 0

𝑥𝑥
ℎ

𝐷𝐷𝐷𝐷 = 0.25
𝐷𝐷𝐷𝐷 = 0.5

𝐷𝐷𝐷𝐷 = 1
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Microscopic Considerations

On microscopic scale, diffusion occurs with different mechanisms often associated with “diffusion vehicles”, 
namely crystal defects mediating the motion of the atoms.
The probability of the different mechanisms is very different and strongly depends on the conditions of 
diffusion. Note that most of them do not correspond to a “free” random walk – the cancelation of the 
elementary mechanism back into the original situation is usually of higher probability.

Interstitial 
mechanism

Direct exchange
and ring mechanism

Vacancy
mechanism

= most important together with mechanisms 
involving agglomerates of point defects.
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Microscopic Considerations

An important feature of diffusion is that it is a thermally activated process. For the elementary 
mechanism to occur, a microscopic energy barrier needs to be overcome. The probability of which can be 
described by an Arrhenius type equation:

𝛤𝛤 = 𝜈𝜈 exp−
∆𝐺𝐺
𝑘𝑘B 𝑇𝑇

𝛤𝛤 denotes the jump rate (probability to move from the position), an attempt rate 𝜈𝜈 (correlated to the 
frequency of vibration of the atoms, see Debye model in Ch. 1a) and the energy barrier ∆𝐺𝐺 to overcome.
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Driving Force
𝐺𝐺

∆𝐺𝐺

Interstitial diffusion is significantly 
determined the migration process.

𝐷𝐷 ∝ exp−
∆𝐺𝐺M

𝑘𝑘B 𝑇𝑇
= exp

∆𝑆𝑆M

𝑘𝑘B
exp−

∆𝐻𝐻M

𝑘𝑘B 𝑇𝑇

Note that the transition from 𝛤𝛤
to 𝐷𝐷 is not as straight as it 
might appear in this lecture. 
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Driving Force
𝐺𝐺

∆𝐺𝐺

Interstitial diffusion is significantly 
determined the migration process.

In the presence of a 
direction determining 
driving force for the 
process.
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Driving Force
𝐺𝐺

∆𝐺𝐺

Substitutional diffusion is determined the 
migration and defect formation process.

𝐷𝐷 ∝ exp−
∆𝐺𝐺M + ∆𝐺𝐺F

𝑘𝑘B 𝑇𝑇

= exp
∆𝑆𝑆M + ∆𝑆𝑆F

𝑘𝑘B
exp−

∆𝐻𝐻M + ∆𝐻𝐻F

𝑘𝑘B 𝑇𝑇



Phase Transformations in Materials

Diffusion

Matrix Diffusant ∆𝐻𝐻/eV 𝐷𝐷0/cm2s−1 𝑇𝑇/°C

γ-Fe

C 1.4 0.15 900 − 1050

Fe 2.8 0.18 1060 − 1390

Co 3.8 3.0 � 102 1050 − 1250

Cr 4.2 1.8 � 104 1050 − 1250

Cu 2.6 3 800 − 1200

Ni 2.9 0.77 930 − 1050

P 3.0 28.3 1280 − 1350

S 2.1 1.35 1200 − 1350

W 3.9 1.0 � 103 1050 − 1250
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Diffusion

Matrix Diffusant ∆𝐻𝐻/eV 𝐷𝐷0/cm2s−1 𝑇𝑇/°C

α-Fe

C 0.8 6.2 � 10−3

N 0.8 3.0 � 10−3

Fe 2.5 0.5 700 − 750

Co 2.3 0.2 700 − 790

Cr 3.6 3.0 � 104

Ni 3.7 9.7 700 − 900

P 2.4 2.9 860 − 900

W 3.0 3.8 � 102
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Most Important Considerations

From the slides before, following most important considerations need to be taken into account 
for the lecture:

Diffusion usually occurs “down-hill” in a way that concentration gradients become smaller. It slows down 
when the concentration gradient decreases. “Up-hill” diffusion can occur when the chemical potential 
increases during mixing.
Interstitial elements have very high diffusion coefficients even at rather low temperature due to 
movement on lattice voids which do not need to be formed.
Substitutional elements have low diffusion coefficients since vacancies need to be present in order to 
mediate the diffusion process of the atoms.
Free volume in the presence of defects facilitates diffusion (when trapping of elements is avoided!), e.g. 
diffusion is much faster at grain boundaries and dislocations in comparison to bulk diffusion.
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