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Phase Transformations in Materials

Topics

Single-Component Systems
Solidification and Allotropic Transformations (Discontinuous)

Probability for Critical Nuclei
Temperature-Time Evolution
Nucleation & Growth as a Function of Time
Complications:

Anisotropic Surface/Interface Energies
Anisotropic Growth Rates
Heat Dissipation
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Phase Transformations in Materials

Nucleation

A nucleation rate 𝜂𝜂 might be considered that describes the number of newly activated nuclei in a 
certain time and within a certain volume, e.g. with 𝜂𝜂 = 1

m3 s
.

Since the nucleation process is determined by fluctuations, an Arrhenius type probability might be 
assumed (similar to what we have done for diffusion in Ch. 1b):

𝜂𝜂 ∝ exp−
∆𝐺𝐺c

𝑘𝑘B 𝑇𝑇
In contrast to other thermally activated processes, the activation barrier changes strongly with 
temperature in case of solidification since:

∆𝐺𝐺c ∝
𝑇𝑇m
∆𝑇𝑇2

Hence, we obtain:

𝜂𝜂 ∝ exp−
𝑇𝑇m

∆𝑇𝑇2 𝑇𝑇
= exp−

𝑇𝑇m
𝑇𝑇m − 𝑇𝑇 2 𝑇𝑇
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Phase Transformations in Materials

Nucleation

When super cooling the liquid, the energy barrier ∆𝐺𝐺c gets 
smaller with decreasing temperature. Hence, nucleation 
becomes more favorable in principle.

However, fluctuations to form critical nuclei are thermally 
activated and therefore, get more unlikely at low temperatures.

The competing contributions determine a maximum nucleation 
rate 𝜂𝜂 at intermediate temperatures.

𝑇𝑇m
𝑇𝑇

0

𝜂𝜂
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Phase Transformations in Materials

Time-Temperature-Transformation
𝑇𝑇

lg 𝑡𝑡

𝑇𝑇m

stable liquid

nucleation 
(determined by 𝜂𝜂) 
and growth

metastable,
super cooled
liquid

solid crystal

solid glass
(e.g. viscosity drops below a critical value)

𝑇𝑇g

5



Phase Transformations in Materials

Nucleation & Growth

Simplified conditions of linear isothermal growth might be assumed in the following.
The growth occurs homogenous and isotropic at linear growth rate 𝑣𝑣 with 𝑣𝑣 = m/s.
A nucleation rate 𝜂𝜂 is considered constant.
In a short period of time d𝜏𝜏:

The number of newly formed nuclei is 𝑁𝑁 = 𝑉𝑉 𝜂𝜂 d𝜏𝜏.
The existing nuclei grow by d𝑅𝑅 = 𝑣𝑣 d𝜏𝜏 to a radius of 𝑅𝑅 = 𝑣𝑣 (𝑡𝑡 − 𝜏𝜏) when nucleation took place at time 𝜏𝜏.
The total volume is then:

𝑉𝑉S = �
0

𝑡𝑡
d𝑉𝑉S = �

0

𝑡𝑡 4
3
𝜋𝜋 𝑣𝑣3 (𝑡𝑡 − 𝜏𝜏)3 𝑉𝑉 𝜂𝜂 d𝜏𝜏 =

4
3
𝜋𝜋 𝑣𝑣3 𝑉𝑉 𝜂𝜂�

0

𝑡𝑡
(𝑡𝑡 − 𝜏𝜏)3 d𝜏𝜏 =

4
3
𝜋𝜋 𝑣𝑣3 𝑉𝑉 𝜂𝜂 −

1
4

(𝑡𝑡 − 𝜏𝜏)4
0

𝑡𝑡

=
𝜋𝜋
3
𝑣𝑣3 𝑉𝑉 𝜂𝜂 𝑡𝑡4

Since the growth of the solid occurs free in the liquid, the volume fraction during isothermal solidification can thus be 
approximated by:

𝑣𝑣S =
𝑉𝑉S

𝑉𝑉
=
𝜋𝜋
3
𝑣𝑣3 𝜂𝜂 𝑡𝑡4

𝑣𝑣L = 1 − 𝑣𝑣S
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Phase Transformations in Materials

Nucleation & Growth

When all nucleation sites are activated from the beginning:
𝑁𝑁 = 𝑉𝑉 𝜂𝜂 = const. (note that 𝜂𝜂 = 1

m3) and 𝑅𝑅 = 𝑣𝑣 𝑡𝑡

The volume fraction of the solid is:

𝑣𝑣S =
𝑉𝑉S

𝑉𝑉
=

4
3
𝜋𝜋 𝑣𝑣3 𝜂𝜂 𝑡𝑡3

𝑣𝑣L = 1 − 𝑣𝑣S
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0.0
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Nucleation & Growth

𝑣𝑣S =
𝜋𝜋
3 𝑣𝑣3 𝜂𝜂 𝑡𝑡4

𝑡𝑡

𝑣𝑣S =
4
3
𝜋𝜋 𝑣𝑣3 𝜂𝜂 𝑡𝑡3

When the same total number of nuclei is 
considered, the approximation with active 
nuclei from the beginning proceeds of course 
faster with ∝ 𝑡𝑡3.

𝑣𝑣S/1

𝑡𝑡f =
4 3
𝜋𝜋 𝑣𝑣3 𝜂𝜂

𝑡𝑡f =
3 3

4𝜋𝜋 𝑣𝑣3 𝜂𝜂
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Time-Temperature-Transformation
𝑇𝑇

lg 𝑡𝑡

𝑇𝑇m

stable liquid

nucleation 
(determined by 𝜂𝜂) 
and growth

metastable,
super cooled
liquid

solid crystal

solid glass
(e.g. viscosity drops below a critical value)

𝑇𝑇g
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Time-Temperature-Transformation
𝑇𝑇

lg 𝑡𝑡

𝑇𝑇m

𝑇𝑇g

𝑣𝑣S/1

1

0

𝑣𝑣S ∝ 𝑡𝑡4
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Phase Transformations in Materials

In reality, several intricacies occur leading to deviations from the simple considerations shown on 
the slides before:

(facet energy) In general, surface/interface energies of crystals are anisotropic. The magnitude of 𝛾𝛾
varies depending on the surface/interface facet under consideration.
(facet growth) The growth of these facets during solidification also occurs anisotropic. Hence, a 
competition between differently fast growing facets is to be considered.
(heat transfer) Finally, solidification (and other transformations) releases heat. Hence, in order to 
maintain the melting/freezing temperature at the solidification front, the heat dissipation needs to be 
considered as important factor for the growth of the solid.

Intricacies

11



Phase Transformations in Materials

The surface energies of crystals are dominated 
by unsaturated bonds.
If we assume a simple 2D cubic crystal where 
only NN interactions of the binding energy 𝑈𝑈NN
are considered (Kossel crystal), the surface 
energies are:

Anisotropic Surface/Interface Energy

𝑎𝑎

010

𝛾𝛾 010

𝛾𝛾 0�10

𝛾𝛾 �100

𝛾𝛾 100

lowest surface energy (smallest number of 
unsaturated bonds per unit length surface)

𝛾𝛾 100 =
𝑈𝑈NN
𝑎𝑎

2 � 1
2

bonds per 𝑎𝑎 remain unsaturated
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Phase Transformations in Materials

The surface energies of crystals are dominated 
by unsaturated bonds.
If we assume a simple 2D cubic crystal where 
only NN interactions of the binding energy 𝑈𝑈NN
are considered (Kossel crystal), the surface 
energies are:

Anisotropic Surface/Interface Energy

𝑎𝑎

110

𝛾𝛾 110

𝛾𝛾 �1�10

𝛾𝛾 �110

𝛾𝛾 1�10

maximum surface energy (largest number of 
unsaturated bonds per unit length surface)

𝛾𝛾 110 =
2𝑈𝑈NN

2𝑎𝑎
≈ 1.41 𝛾𝛾 100

4 � 1
2

bonds per 2𝑎𝑎 remain 
unsaturated
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Phase Transformations in Materials

The surface energies of crystals are dominated 
by unsaturated bonds.
If we assume a simple 2D cubic crystal where 
only NN interactions of the binding energy 𝑈𝑈NN
are considered (Kossel crystal), the surface 
energies are:

Anisotropic Surface/Interface Energy

𝑎𝑎

520

𝛾𝛾 520 =
7𝑈𝑈NN

29𝑎𝑎
≈ 1.30 𝛾𝛾 100

intermediate surface energy

5 + 4 � 1
2

bonds per 29𝑎𝑎
remain unsaturated
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Phase Transformations in Materials

The surface energies of crystals are dominated 
by unsaturated bonds.
If we assume a simple 2D cubic crystal where 
only NN interactions of the binding energy 𝑈𝑈NN
are considered (Kossel crystal), the surface 
energies are:

Anisotropic Surface/Interface Energy

𝛾𝛾 =
𝑈𝑈NN
𝑎𝑎 sin𝜑𝜑 + cos𝜑𝜑

𝜑𝜑

𝛾𝛾
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Phase Transformations in Materials

The equilibrium shape of a crystal is given by a 
minimum excess Gibbs free energy ∆𝐺𝐺:

∆𝐺𝐺 = �
𝑓𝑓
𝛾𝛾𝑓𝑓 𝐴𝐴𝑓𝑓

𝑓𝑓 are the different facets of the crystal, 𝛾𝛾𝑓𝑓 the 
surface/interface energies of the facets, and 𝐴𝐴𝑓𝑓
the areas of these facets.
The geometry with minimum excess energy is 
found by performing Wulff’s construction:

Determine all perpendicular planes for each 
connection line of the origin to the 𝛾𝛾(𝜑𝜑) function.
The inner envelope of these planes are the 
equilibrium shape.

Wulff’s Construction

𝜑𝜑

𝛾𝛾

𝛾𝛾 =
𝑈𝑈NN
𝑎𝑎

sin𝜑𝜑 + cos𝜑𝜑
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Phase Transformations in Materials

The equilibrium shape of a crystal is given by a 
minimum excess Gibbs free energy ∆𝐺𝐺:

∆𝐺𝐺 = �
𝑓𝑓
𝛾𝛾𝑓𝑓 𝐴𝐴𝑓𝑓

𝑓𝑓 are the different facets of the crystal, 𝛾𝛾𝑓𝑓 the 
surface/interface energies of the facets, and 𝐴𝐴𝑓𝑓
the areas of these facets.
The geometry with minimum excess energy is 
found by performing Wulff’s construction:

Determine all perpendicular planes for each 
connection line of the origin to the 𝛾𝛾(𝜑𝜑) function.
The inner envelope of these planes are the 
equilibrium shape.

Wulff’s Construction

𝜑𝜑
𝛾𝛾

𝛾𝛾 =
𝑈𝑈NN
𝑎𝑎

sin2𝜑𝜑 + cos2𝜑𝜑
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Phase Transformations in Materials

The equilibrium shape of a crystal is given by a 
minimum excess Gibbs free energy ∆𝐺𝐺:

∆𝐺𝐺 = �
𝑓𝑓
𝛾𝛾𝑓𝑓 𝐴𝐴𝑓𝑓

𝑓𝑓 are the different facets of the crystal, 𝛾𝛾𝑓𝑓 the 
surface/interface energies of the facets, and 𝐴𝐴𝑓𝑓
the areas of these facets.
The geometry with minimum excess energy is 
found by performing Wulff’s construction:

Determine all perpendicular planes for each 
connection line of the origin to the 𝛾𝛾(𝜑𝜑) function.
The inner envelope of these planes are the 
equilibrium shape.

Wulff’s Construction

𝜑𝜑

𝛾𝛾

𝛾𝛾 =
𝑈𝑈NN
𝑎𝑎

sin
3
2
𝜑𝜑 + cos

3
2
𝜑𝜑
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Phase Transformations in Materials

Cu prototype structure (fcc, A2)

Area: 𝐴𝐴 100 = 𝑎𝑎2

No. of atoms: 𝑁𝑁 100 = 1 + 2 � 1
2

= 2

Energy of broken NN bonds:
𝑈𝑈broken = 12 − 8 𝑈𝑈NN

𝛾𝛾 100 =
𝑁𝑁 100 𝑈𝑈broken

𝐴𝐴 100
= 8

𝑈𝑈NN
𝑎𝑎2

Wulff’s Construction

c

1
2

3
4

56

7 8
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Phase Transformations in Materials

Cu prototype structure (fcc, A2)

Area: 𝐴𝐴 111 = 3
2
𝑎𝑎 � 2

2
𝑎𝑎 = 3

2
𝑎𝑎2

No. of atoms: 𝑁𝑁 111 = 3 � 1
2

+ 3 � 1
6

= 2

Energy of broken NN bonds:
12 − 9 𝑈𝑈NN

𝛾𝛾 111 =
12

3
𝑈𝑈NN
𝑎𝑎2

≈ 6.93
𝑈𝑈NN
𝑎𝑎2

Wulff’s Construction

c

1 2

3

4 5

6 7

8 9
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Cu prototype structure (fcc, A2)

Area: 𝐴𝐴 110 = 2𝑎𝑎 � 𝑎𝑎 = 2𝑎𝑎2

No. of atoms: 𝑁𝑁 111 = 2 � 1
2

+ 4 � 1
4

= 2

Energy of broken NN bonds:
12 − 7 𝑈𝑈NN + 1𝑈𝑈NN

𝛾𝛾 110 =
12

2
𝑈𝑈NN
𝑎𝑎2

≈ 8.49
𝑈𝑈NN
𝑎𝑎2

Wulff’s Construction

c
1

2
3

4

5
6

7
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Phase Transformations in Materials

Cu prototype structure (fcc, A2)

Area: 𝐴𝐴 110 = 2𝑎𝑎 � 𝑎𝑎 = 2𝑎𝑎2

No. of atoms: 𝑁𝑁 111 = 2 � 1
2

+ 4 � 1
4

= 2

Energy of broken NN bonds:
12 − 7 𝑈𝑈NN + 1𝑈𝑈NN

𝛾𝛾 110 =
12

2
𝑈𝑈NN
𝑎𝑎2

≈ 8.49
𝑈𝑈NN
𝑎𝑎2

Wulff’s Construction Note that these sub-
surface atoms also 
contribute with 1 broken 
NN bond per unit cell of 
the surface facet!
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Cu prototype structure (fcc, A2)

𝛾𝛾 110 > 𝛾𝛾 100 > 𝛾𝛾 111

Wulff’s Construction
𝛾𝛾(0�11)

intersection along (011)

𝛾𝛾(01�1)

𝛾𝛾(1�11)

𝛾𝛾(100)𝛾𝛾(�100)

𝛾𝛾(111)

𝛾𝛾(�11�1) 𝛾𝛾(�11�1)
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Wulff’s Construction

intersection along (011)

54.74°

6.93
𝑈𝑈NN
𝑎𝑎2

90°

8.49
𝑈𝑈NN
𝑎𝑎2

8
𝑈𝑈NN
𝑎𝑎2

Cu prototype structure (fcc, A2)

𝛾𝛾 110 > 𝛾𝛾 100 > 𝛾𝛾 111
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Wulff’s Construction

intersection along (011)

𝛾𝛾 = 2𝑟𝑟 cos𝛼𝛼 cos𝜑𝜑 + 2𝑟𝑟 sin𝛼𝛼 sin𝜑𝜑

Cu prototype structure (fcc, A2)

𝛾𝛾 110 > 𝛾𝛾 100 > 𝛾𝛾 111
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Wulff’s Construction

Cu prototype structure (fcc, A2)

𝛾𝛾 110 > 𝛾𝛾 100 > 𝛾𝛾 111
only 111 and 100 facets
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Cu prototype structure (fcc, A2)

Wulff’s Construction

54.74°

35.26°

𝑑𝑑𝑥𝑥
cos 54.74°

≈ 1.732𝑑𝑑𝑥𝑥

𝑑𝑑𝑥𝑥

𝑑𝑑𝑥𝑥
cos 35.26°

≈ 1.225𝑑𝑑𝑥𝑥

𝑙𝑙

1
cos2 35.26°

+
1

cos2 54.74°
𝑑𝑑𝑥𝑥 ≈ 2.121𝑑𝑑𝑥𝑥

𝑥𝑥𝑥𝑥

𝑥𝑥 tan 35.26°
≈ 0.707𝑥𝑥

𝑥𝑥
cos 35.26°

≈ 1.225𝑥𝑥

𝛾𝛾 100

𝛾𝛾 111
𝑑𝑑𝑥𝑥

35.26°
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Cu prototype structure (fcc, A2)
Total interface/surface energy:

∆𝐺𝐺 = �
𝑓𝑓
𝛾𝛾𝑓𝑓 𝐴𝐴𝑓𝑓 ≈ 4𝑙𝑙 𝛾𝛾 111 2.121𝑑𝑑𝑥𝑥 − 1.225𝑥𝑥 + 𝛾𝛾 100 0.707𝑥𝑥

= 4 𝛾𝛾 111 𝑙𝑙 2.121𝑑𝑑𝑥𝑥 + 1.225 − 0.707
𝛾𝛾 100

𝛾𝛾 111
𝑥𝑥

= 4 𝛾𝛾 111 𝑙𝑙 𝑑𝑑0 2.121 1 + 0.333
𝑥𝑥
𝑑𝑑0

2

+ 1.225 − 0.707
𝛾𝛾 100

𝛾𝛾 111

𝑥𝑥
𝑑𝑑0

Constant volume 𝑉𝑉0 = 𝑉𝑉𝑥𝑥:
𝑉𝑉0 ≈ 4𝑙𝑙

1
2 1.732𝑑𝑑0 � 1.225𝑑𝑑0 = 4𝑙𝑙 � 1.061𝑑𝑑0

𝑉𝑉𝑥𝑥 ≈ 4𝑙𝑙 𝑑𝑑𝑥𝑥2 1.061 − 0.353
𝑥𝑥
𝑑𝑑𝑥𝑥

2

𝑑𝑑𝑥𝑥 = 𝑑𝑑0 1 + 0.333
𝑥𝑥
𝑑𝑑0

2

Wulff’s Construction
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Cu prototype structure (fcc, A2)

Wulff’s Construction

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6

2.00

2.02

2.04

2.06

2.08

2.10

2.12

2.14

𝑥𝑥
𝑑𝑑0

∆𝐺𝐺
4 𝛾𝛾 111 𝑙𝑙 𝑑𝑑0

for 𝛾𝛾 100
𝛾𝛾 111

= 8
6.39

≈ 1.154

2.121 1 + 0.333
𝑥𝑥
𝑑𝑑0

2

+ 1.225 − 0.707
𝛾𝛾 100

𝛾𝛾 111

𝑥𝑥
𝑑𝑑0

Minimum total surface/interface 
energy is observed at

𝑥𝑥
𝑑𝑑0
≈ 0.613 corresponds to 𝑥𝑥

𝑑𝑑𝑥𝑥
≈ 0.578
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Cu prototype structure (fcc, A2)

Wulff’s Construction

1.732𝑑𝑑𝑥𝑥

𝑙𝑙

𝛾𝛾 100

𝛾𝛾 111
𝑑𝑑𝑥𝑥 ≈ 1.154𝑑𝑑𝑥𝑥

for 𝛾𝛾 100
𝛾𝛾 111

= 8
6.39

≈ 1.154

𝑥𝑥 ≈ 0.578𝑑𝑑𝑥𝑥

𝑑𝑑𝑥𝑥
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As pointed out in Chs. 1a & b, energy considerations are not relevant as long as the process is 
unable to kinetically proceed.
In general, the growth of a facet is mediated by adding atoms to the surface. Hence, the growth 
velocity (see 𝑣𝑣 on the previous slides) is higher for surface facets with low packing factor since a 
smaller number of atoms is needed to form a monolayer of the facet. For closed packed facets it 
is vice versa.
There is a resulting competition of fast and slowly growing facets, the latter one prevailing in the 
long run.
A similar construction principle as for the surface/interface energies exists but for polar plots of 
the growth velocity.

Facet Growth
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Facet Growth

Crystal facets growing at 
different velocities at 
different time steps.

Slowly growing facets

Fast growing facet

The relative proportion of 
the fast growing facet to 
the total surface of the 
crystal becomes smaller 
and smaller until it 
completely disappears.

progress 
with time
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On atomistic scale, the attachment process is also of relevance. Again the surface of a simple 
cubic crystal with dominant NN interactions might be considered.
The adsorption of a free atom the flat surface has only little energy gain since only a single bond 
gets saturated.

Growth

adatom
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Growth

Other attachment sites, like surface vacancy, step vacancy, kink site, or step site are more 
favorable since more bonds get saturated.
The kink site is of specific interest since it is self-reproducing! When attaching an atom to a kink 
site, the kink site does not vanish and is still available for further growth.

surface
vacancy

kink site

step vacancy

step site

Note that in some textbooks the kink site is 
characterized as the energetically feasible 
position. However, other positions are 
energetically of greater value but after the 
attachment process, they are not available 
anymore and need to be formed again. 
Hence, the importance for crystal growth is 
not only the energetic consideration but also 
the kinetic one.

34



Phase Transformations in Materials

Growth

The process is majorly influenced by adsorption to the surface (with a certain energy barrier) and 
afterwards surface diffusion towards the aforementioned surface sites (again connected with a 
specific energy barrier).

surface
vacancy

kink site

step vacancy

step site

adatom
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Growth

Note that the presence of other defects, for example growth dislocations, might mediate an even 
faster growth by avoiding losing the step for attachment of additional atoms during growth:

kink site

Screw dislocation line 
penetrating the 

surface creating a 
surface step.

The screw dislocation 
allows for fast 

formation and growth 
of surface steps.
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Heat Transfer

In general, two situations might be considered when it comes to heat transfer at a flat 
solidification front:

solidification front

𝑇𝑇

𝑇𝑇m

te
m

pe
ra

tu
re

 is
ol

in
es

heat flux

𝑇𝑇

𝑇𝑇m
heat dissipation 
through the solid

heat dissipation 
through the liquid

super cooled liquidsuper heated liquid

super cooled liquidsuper heated liquid

solidsolid

solidsolid

𝑣𝑣
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Phase Transformations in Materials

Note: Thermal Conduction

Similar to diffusion in Ch. 1b:

heat flux: 𝑞𝑞 = −λ � 𝛻𝛻𝑇𝑇

continuity: 𝜌𝜌𝜌𝜌 𝜕𝜕𝜕𝜕
𝜕𝜕𝑡𝑡
− 𝛻𝛻𝑞𝑞 = 0

𝜕𝜕𝑇𝑇
𝜕𝜕𝑡𝑡

=
λ
𝜌𝜌𝜌𝜌

∆𝑇𝑇

𝑇𝑇 = K, 𝛻𝛻𝑇𝑇 = K
m

, λ = W
mK

, 𝑞𝑞 = W
m2, 𝜌𝜌 = kg

m3, 𝜌𝜌 = J
kg K
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Phase Transformations in Materials

Note: Thermal Conduction

Similar to diffusion in Ch. 1b:

steady-state 𝜕𝜕𝜕𝜕
𝜕𝜕𝑡𝑡

= 0, linear: 𝜕𝜕
2𝜕𝜕

𝜕𝜕𝑥𝑥2
= 0

𝑇𝑇 𝑥𝑥 = 𝑇𝑇0 + 𝑘𝑘 𝑥𝑥, 𝛻𝛻𝑇𝑇 = 𝑘𝑘

steady-state 𝜕𝜕𝜕𝜕
𝜕𝜕𝑡𝑡

= 0, cylindrical in radial direction: 𝜕𝜕
𝜕𝜕𝜕𝜕

𝑟𝑟 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= 0

𝑇𝑇 𝑟𝑟 = 𝑇𝑇0 + 𝑘𝑘 ln 𝑟𝑟, 𝛻𝛻𝑇𝑇 = 𝑘𝑘
𝜕𝜕

steady-state 𝜕𝜕𝜕𝜕
𝜕𝜕𝑡𝑡

= 0, spherical in radial direction: 𝜕𝜕
𝜕𝜕𝜕𝜕

𝑟𝑟2 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= 0

𝑇𝑇 𝑟𝑟 = 𝑇𝑇0 + 𝑘𝑘
𝜕𝜕
, 𝛻𝛻𝑇𝑇 = − 𝑘𝑘

𝜕𝜕2
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Phase Transformations in Materials

Stationary Situation

For the situation of a stationary, planar solidification front, nucleation has already taken place, so the 
interface contribution can be neglected. If the interface is flat, no super cooling at the interface occurs. The 
assumption of local equilibrium is reasonable. The following balance of heat fluxes needs to be obtained for 
a stationary growth:

𝑇𝑇

𝑇𝑇m

𝑇𝑇

𝑇𝑇m
heat dissipation 
through the solid

heat dissipation 
through the liquid

super cooled liquidsuper heated liquid solidsolid

λS 𝛻𝛻𝑇𝑇S = λL 𝛻𝛻𝑇𝑇L + 𝑣𝑣 ∆ℎm

𝑣𝑣 =
λS 𝛻𝛻𝑇𝑇S − λL 𝛻𝛻𝑇𝑇L

∆ℎm

𝑞𝑞L = −λL 𝛻𝛻𝑇𝑇L𝑞𝑞S
= −λS 𝛻𝛻𝑇𝑇S 𝑞𝑞S = −λS 𝛻𝛻𝑇𝑇S = 0

𝑞𝑞L = −λL 𝛻𝛻𝑇𝑇L

∆ℎm is released at the 
solidification front

λS, λL are the thermal conductivities
𝛻𝛻𝑇𝑇S, 𝛻𝛻𝑇𝑇L are the temperature gradients
∆ℎm is the volumetric latent heat

λ =
W

m K
, 𝛻𝛻𝑇𝑇 =

K
m

, ∆ℎm =
J

m3

=
Ws
m3 , 𝑣𝑣 =

m
s

∆ℎm is released at the 
solidification front

𝑣𝑣
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Phase Transformations in Materials

Heat Transfer

Heat conduction follows the exact same equations as seen for diffusion in Ch. 1b! Heat flux is 
opposite to temperature gradients (and perpendicular to the temperature isolines in the figures).
The important two cases for solidification are:

Heat dissipation through the solid, that is the most realistic case for solidification in a container which is 
typically colder than the solidifying material and the liquid.
Heat dissipation through the liquid occurs far away from the container walls when nucleation takes place 
free.

The temperature profile is determined by:
In any case both, solid and liquid can only be in equilibrium at 𝑇𝑇m (considering a flat interface and nucleation 
with super cooling already took place). We consider “local equilibrium” where the phases are contact! Due to 
the contact, there is no time lag to obtain equilibrium. Hence, at the solidification front 𝑇𝑇 = 𝑇𝑇m.
For heat dissipation through the solid, the ability to dissipate the latent heat determines the progress of 
solidification. The liquid has 𝑇𝑇 > 𝑇𝑇m. For heat dissipation through the liquid, the liquid is significantly super 
cooled since latent heat needs to be conducted away. If this would not be the case, there would be no 
solidification progress.
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Phase Transformations in Materials

Heat Transfer

Consider a perturbation/protrusion of the solidification front:

𝑇𝑇

𝑇𝑇m

𝑇𝑇

𝑇𝑇m
heat dissipation 
through the solid

heat dissipation 
through the liquid

super cooled liquidsuper heated liquid

super cooled liquidsuper heated liquid

solidsolid

solidsolid

𝑣𝑣

𝒒𝒒L 𝒒𝒒L
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Phase Transformations in Materials

Heat Transfer

The heat dissipation has important consequence on the stability of the 
solidification front:

In case some portion of solid penetrates the liquid when the heat is dissipated through 
the solid, the changing heat flux acts against the protrusion! The further growth of the 
protrusion is restricted.
In case some portion of the solid penetrates the super cooled liquid, the generated 
heat flux further facilitates the situation and the solidification front becomes unstable (it 
does not remain planar).
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Phase Transformations in Materials

Heat Transfer

Due to the instability of the solidification front, dendritic growth can occur:

primary dendrite arm

secondary dendrite arm

tertiary dendrite arm

D. A. Porter und K. E. Easterling: “Phase Transformations in Metals and Alloys”, Berlin, Heidelberg: Springer-Science+Business Media (1992)
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Phase Transformations in Materials

Revision of Free Nucleation

For homogeneous nucleation of a sphere, we have seen (Ch. 3a):

solid

𝑟𝑟c

𝑇𝑇 𝑇𝑇m

𝑥𝑥

∆𝑇𝑇
𝑇𝑇L

∆𝐺𝐺hom= −
4
3
𝜋𝜋𝑟𝑟3 ∆𝑔𝑔D + 4𝜋𝜋𝑟𝑟2 γSL

𝑟𝑟c,sphere =
2 γSL

∆𝑔𝑔D
=

2 γSL 𝑇𝑇m
∆ℎm ∆𝑇𝑇

No growth occurs since 
the released heat ∆ℎm is 
not dissipated from the 
nucleus.

𝑥𝑥

super
cooled
liquid
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Phase Transformations in Materials

Extension of Free Nucleation

For homogeneous nucleation of a cylinder, we obtain:

𝑇𝑇 𝑇𝑇m

𝑥𝑥

∆𝑇𝑇
𝑇𝑇L

𝑥𝑥

No growth occurs since 
the released heat ∆ℎm is 
not dissipated from the 
nucleus.

𝑙𝑙 ∆𝐺𝐺hom

𝑙𝑙
= −𝜋𝜋𝑟𝑟2 ∆𝑔𝑔D + 2𝜋𝜋𝑟𝑟 γSL

𝑟𝑟c,cylinder =
γSL

∆𝑔𝑔D
=

γSL 𝑇𝑇m
∆ℎm ∆𝑇𝑇solid

𝑟𝑟c
super
cooled
liquid
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Phase Transformations in Materials

Heat Transfer

For the planar, steady-state solidification front moving into the super cooled liquid, we obtain:

𝑇𝑇 𝑇𝑇m

𝑥𝑥

No super cooling is needed 
since the interface remains flat 
and does not change during 
solidification. Growth is 
mediated by the stationary heat 
dissipation.

𝑥𝑥

𝑣𝑣planar

The stationary linear heat conduction 
problem yields:
𝛻𝛻𝑇𝑇L = const. < 0

with the heat flux balance:

𝑣𝑣planar =
λS 𝛻𝛻𝑇𝑇S − λL 𝛻𝛻𝑇𝑇L

∆ℎm

=
−λL 𝛻𝛻𝑇𝑇L

∆ℎm

super
cooled
liquid

solid
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Phase Transformations in Materials

Thermal Dendrites – Heat Transfer

Protrusion at the initially flat solidification front:

𝑇𝑇 𝑇𝑇m

𝑥𝑥

∆𝑇𝑇curv

∆𝑇𝑇cond

𝛻𝛻𝑇𝑇L ≈ −
∆𝑇𝑇cond

𝑟𝑟

𝑇𝑇i

𝑇𝑇∞

The stationary cylindrical heat conduction 
problem in radial direction yields for 𝑥𝑥 = 𝑟𝑟:

𝛻𝛻𝑇𝑇L = −
∆𝑇𝑇cond

𝑟𝑟

The heat flux balance yields a stationary 
growth at (λS 𝛻𝛻𝑇𝑇S = 0):

𝑣𝑣tip =
λS 𝛻𝛻𝑇𝑇S − λL 𝛻𝛻𝑇𝑇L

∆ℎm
=
λL ∆𝑇𝑇cond

∆ℎm 𝑟𝑟

Quick growth occurs for small 𝑟𝑟.

∆𝑇𝑇tot

𝑟𝑟
Note that the 
protrusion is 
described as a 
cylinder with the 
long axis pointing 
out of the sheet 
plane.

𝑙𝑙

super
cooled
liquid

solid 𝑣𝑣tip
𝑥𝑥
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Phase Transformations in Materials

Note: Gibbs-Thomson Equation

Similar to what is observed for bubbles, a curved surface/interface applies a pressure to the 
volume due to trend to minimize the surface/interface energy contribution (Laplace pressure).
The treatment of the problem of a solid sphere or cylinder in a liquid in this respect is another 
representation of the free nucleation problem:

𝐺𝐺S 𝑇𝑇m, 𝑝𝑝0 = 𝐺𝐺L 𝑇𝑇m, 𝑝𝑝0

equilibrium
at planar interface

equilibrium
at curved interface

𝑇𝑇m, 𝑝𝑝0𝑇𝑇m, 𝑝𝑝0 𝑇𝑇f, 𝑝𝑝1

𝑇𝑇f, 𝑝𝑝0

𝐺𝐺S 𝑇𝑇f, 𝑝𝑝1 = 𝐺𝐺L 𝑇𝑇f, 𝑝𝑝0

liquidsolid liquid

solid
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Phase Transformations in Materials

Note: Gibbs-Thomson Equation

By using the integration form of d𝐺𝐺 = −𝑆𝑆 d𝑇𝑇 + 𝑉𝑉 d𝑝𝑝 (Ch. 1a):
𝐺𝐺S 𝑇𝑇f,𝑝𝑝1 = 𝐺𝐺L 𝑇𝑇f,𝑝𝑝0

𝐺𝐺S 𝑇𝑇m,𝑝𝑝0 + �
𝜕𝜕m

𝜕𝜕f
−𝑆𝑆S d𝑇𝑇 + �

𝑝𝑝0

𝑝𝑝1
𝑉𝑉S d𝑝𝑝 = 𝐺𝐺L 𝑇𝑇m,𝑝𝑝0 + �

𝜕𝜕m

𝜕𝜕f
−𝑆𝑆L d𝑇𝑇

𝐺𝐺S 𝑇𝑇m, 𝑝𝑝0 = 𝐺𝐺L 𝑇𝑇m, 𝑝𝑝0

equilibrium
at planar interface

equilibrium
at curved interface

𝐺𝐺S 𝑇𝑇f, 𝑝𝑝1 = 𝐺𝐺L 𝑇𝑇f, 𝑝𝑝0

𝑇𝑇m, 𝑝𝑝0𝑇𝑇m, 𝑝𝑝0 𝑇𝑇f, 𝑝𝑝1

𝑇𝑇f, 𝑝𝑝0liquidsolid liquid

solid
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Phase Transformations in Materials

Note: Gibbs-Thomson Equation

𝐺𝐺S 𝑇𝑇m,𝑝𝑝0 = 𝐺𝐺L 𝑇𝑇m,𝑝𝑝0 and ∆𝑆𝑆m= 𝑆𝑆L − 𝑆𝑆S = const. and 𝑉𝑉S = const. :

+�
𝑝𝑝0

𝑝𝑝1
𝑉𝑉S d𝑝𝑝 = −�

𝜕𝜕m

𝜕𝜕f
∆𝑆𝑆m d𝑇𝑇

𝑉𝑉S ∆𝑝𝑝 = ∆𝑆𝑆m ∆𝑇𝑇

𝐺𝐺S 𝑇𝑇m, 𝑝𝑝0 = 𝐺𝐺L 𝑇𝑇m, 𝑝𝑝0

equilibrium
at planar interface

equilibrium
at curved interface

𝐺𝐺S 𝑇𝑇f, 𝑝𝑝1 = 𝐺𝐺L 𝑇𝑇f, 𝑝𝑝0

𝑇𝑇m, 𝑝𝑝0𝑇𝑇m, 𝑝𝑝0 𝑇𝑇f, 𝑝𝑝1

𝑇𝑇f, 𝑝𝑝0liquidsolid liquid

solid
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Phase Transformations in Materials

Note: Gibbs-Thomson Equation

∆𝑆𝑆m= ∆𝐻𝐻m
𝜕𝜕m

(Ch. 1a) and ∆ℎm= ∆𝐻𝐻m
𝑉𝑉S

:

∆𝑇𝑇 =
𝑉𝑉S ∆𝑝𝑝
∆𝑆𝑆m

=
∆𝑝𝑝 𝑇𝑇m
∆ℎm

𝐺𝐺S 𝑇𝑇m, 𝑝𝑝0 = 𝐺𝐺L 𝑇𝑇m, 𝑝𝑝0

equilibrium
at planar interface

equilibrium
at curved interface

𝐺𝐺S 𝑇𝑇f, 𝑝𝑝1 = 𝐺𝐺L 𝑇𝑇f, 𝑝𝑝0

𝑇𝑇m, 𝑝𝑝0𝑇𝑇m, 𝑝𝑝0 𝑇𝑇f, 𝑝𝑝1

𝑇𝑇f, 𝑝𝑝0

A “melting point depression” is 
observed when the freezing solid 
is finely dispersed in a liquid.

liquidsolid liquid

solid
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Phase Transformations in Materials

Note: Laplace Pressure

The surface/interface tensions need to counter balance internal pressure:

𝜋𝜋 𝑟𝑟 + 𝛿𝛿 2 − 𝑟𝑟2 𝜎𝜎 − 𝜋𝜋𝑟𝑟2 ∆𝑝𝑝 = 0

∆𝑝𝑝 =
2𝑟𝑟𝛿𝛿 + 𝛿𝛿2

𝑟𝑟2 𝜎𝜎
with 𝛿𝛿2 ≪ 2𝑟𝑟𝛿𝛿:

∆𝑝𝑝 ≈
2𝛿𝛿𝜎𝜎
𝑟𝑟 =

2𝛾𝛾
𝑟𝑟

2𝛿𝛿𝑙𝑙 𝜎𝜎 − 2𝑟𝑟𝑙𝑙 ∆𝑝𝑝 = 0

∆𝑝𝑝 =
𝛿𝛿
𝑟𝑟 𝜎𝜎 =

𝛾𝛾
𝑟𝑟

𝑙𝑙

𝛿𝛿𝛿𝛿𝜎𝜎

∆𝑝𝑝

∆𝑝𝑝𝜎𝜎 𝜎𝜎
surface tensions internal pressure

liquid

solid

liquid

solid
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Phase Transformations in Materials

Thermal Dendrites – Interface Curvature

Protrusion at the initially flat solidification front:

corr. to the critical 
radius in the case 
of homogenous 
nucleation case

𝑇𝑇 𝑇𝑇m

𝑥𝑥

∆𝑇𝑇curv

∆𝑇𝑇cond

𝛻𝛻𝑇𝑇L ≈ −
∆𝑇𝑇cond

𝑟𝑟

𝑇𝑇i

𝑇𝑇∞

∆𝑇𝑇tot

Similar to the conditions of homogeneous 
nucleation, the curved surface of the (cylinder) 
tip requires super cooling due to the acting 
interface energies/tensions (see Ch. 3a):

∆𝑇𝑇curv=
∆𝑝𝑝 𝑇𝑇m
∆ℎm

=
γSL 𝑇𝑇m
∆ℎm 𝑟𝑟

Hence, the minimum tip radius 𝑟𝑟c is 
determined by ∆𝑇𝑇tot = ∆𝑇𝑇curv + ∆𝑇𝑇cond with 
∆𝑇𝑇cond = 0:

𝑟𝑟c =
γSL 𝑇𝑇m

∆ℎm ∆𝑇𝑇tot

Note that the 
protrusion is 
described as a 
cylinder with the 
long axis pointing 
out of the sheet 
plane.

𝑙𝑙 𝑟𝑟

super
cooled
liquid

solid 𝑣𝑣tip
𝑥𝑥
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Phase Transformations in Materials

Protrusion at the initially flat solidification front:

Thermal Dendrites

𝑇𝑇 𝑇𝑇m

𝑥𝑥

∆𝑇𝑇curv

∆𝑇𝑇cond

𝛻𝛻𝑇𝑇L ≈ −
∆𝑇𝑇cond

𝑟𝑟

𝑇𝑇i

𝑇𝑇∞

∆𝑇𝑇tot

Based on this, the equations can be 
reformulated:

∆𝑇𝑇curv=
γSL 𝑇𝑇m
∆ℎm 𝑟𝑟

= ∆𝑇𝑇tot
𝑟𝑟c

𝑟𝑟

Hence,

𝑣𝑣tip =
λL ∆𝑇𝑇cond

∆ℎm 𝑟𝑟
=

λL

∆ℎm
1
𝑟𝑟
∆𝑇𝑇tot − ∆𝑇𝑇curv

=
λL

∆ℎm
∆𝑇𝑇tot

𝑟𝑟
1 −

𝑟𝑟c

𝑟𝑟

Note that the 
protrusion is 
described as a 
cylinder with the 
long axis pointing 
out of the sheet 
plane.

𝑙𝑙 𝑟𝑟

super
cooled
liquid

solid 𝑣𝑣tip
𝑥𝑥
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Phase Transformations in Materials

0 2 4 6 8 10

Thermal Dendrites

𝑟𝑟
𝑟𝑟c

𝑣𝑣
λL ∆𝑇𝑇tot
∆ℎm

𝑣𝑣tip =
λL ∆𝑇𝑇tot

∆ℎm
1
𝑟𝑟

1 −
𝑟𝑟c

𝑟𝑟𝑟𝑟∗ = 2𝑟𝑟c

Maximum (stationary) growth velocity of the 
tip  𝑣𝑣tip,max = λL

∆ℎm

∆𝜕𝜕tot

4𝜕𝜕c
is observed for 𝑟𝑟∗ =

2𝑟𝑟c. No growth is observed for tip radii lower 
than the critical radius of homogeneous 
nucleation.
Hence, the tip will nucleate at 𝑟𝑟c and quickly 
grow to 2𝑟𝑟c; afterwards stationary growth is 
obtained. Any perturbation with 𝑟𝑟 < 𝑟𝑟c of an 
otherwise flat solidification front is unstable 
and cannot persist.

no growth
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Phase Transformations in Materials

Thermal Dendrites

0 2 4 6 8 10 𝑟𝑟
𝑟𝑟c

𝑣𝑣
λL ∆𝑇𝑇tot
∆ℎm

𝑟𝑟∗ = 2𝑟𝑟c

𝑣𝑣tip,max =
λL

∆ℎm
∆𝑇𝑇tot

4𝑟𝑟c Dendritic growth occurs when the tip growth 
is faster than growth of the planar front (the 
tip escapes the planar front):

𝑣𝑣tip,max > 𝑣𝑣planar
with

λL

∆ℎm
∆𝑇𝑇tot

4𝑟𝑟c >
−λL 𝛻𝛻𝑇𝑇L,planar

∆ℎm
hence

𝛻𝛻𝑇𝑇L,planar > −
∆𝑇𝑇tot

4𝑟𝑟c
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Phase Transformations in Materials

Thermal Dendrites

𝑇𝑇 𝑇𝑇m

𝑥𝑥

𝑇𝑇i

𝑇𝑇∞

𝛻𝛻𝑇𝑇L,planar > −
∆𝑇𝑇tot

4𝑟𝑟c

𝛻𝛻𝑇𝑇L,tip,max = −
∆𝑇𝑇tot

4𝑟𝑟c

𝑣𝑣planar =
−λL 𝛻𝛻𝑇𝑇L,planar

∆ℎm

𝑣𝑣tip,max = λL

∆ℎm

∆𝜕𝜕tot

4𝜕𝜕c

∆𝑇𝑇cond,max = ∆𝑇𝑇curv,max = 1
2
∆𝑇𝑇tot

𝑣𝑣tip,max

𝑣𝑣planar
planar solidification front

dendrite tip
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