

Phase Transformations in Materials

Lecture for "Mechanical Engineering" and "Materials Science and Engineering" Dr.-Ing. Alexander Kauffmann (Bldg. 10.91, R. 375) Dr. Sandipan Sen (Bldg. 10.91, R. 311)

Version 24-01-14

KIT – The Research University in the Helmholtz Association

www.kit.edu

Topics

Spinodal Decomposition (Miscibility Gap)

- **Regular Solutions with** $\Delta H_{\text{mix}} \neq 0$
- Order, Clustering, Decomposition
- Extrema of the Liquidus Line
- Miscibility Gap
- Continuous and Discontinuous Decomposition

• As seen in Ch. 4a, *G* of the alloy can be obtained based on a linear superposition of the *G* of the individual elements, G_A and G_B , and an excess term ΔG^{\min} :

 $G = x_{\rm A} G_{\rm A} + x_{\rm B} G_{\rm B} + \Delta G^{\rm mix}$

• ΔG^{mix} refers to ΔH^{mix} and ΔS_{mix} , when comparing the condition of separated elements A and B and randomly mixed A and B: $\Delta G^{\text{mix}} = \Delta H^{\text{mix}} - T \Delta S^{\text{mix}}$

• For regular solutions, we consider $\Delta H^{\text{mix}} \neq 0$.

Thermodynamic Considerations

An estimate might be to consider the change of internal energy by the different (nearest neighbor) bond energies U_{ij} depending on the binding partner:

 $U = N_{AA} \cdot U_{AA} + N_{BB} \cdot U_{BB} + N_{AB} \cdot U_{AB}$

- Note that $U_{ij} < 0$ and a stronger bond is achieved for a more negative U_{ij} . In order to remove atoms from the bond, the energy of the system increases to zero.
- As for the configurational entropy, the change in internal energy by the mixing process needs to be consider to obtain $\Delta H^{\text{mix}} = \Delta U^{\text{mix}}$.

Thermodynamic Considerations

• When the elements are separated in a 2D cubic crystal (Kossel crystal with the coordination number z = 4 and a binding energy of U_{ij}), it amounts to:

$$U^{\text{separat}} = \frac{1}{2} x_{\text{A}} z N \cdot U_{\text{AA}} + \frac{1}{2} x_{\text{B}} z N \cdot U_{\text{BB}}$$

• For random mixing, $x_A x_B z N$ dissimilar bonds might be created: $U^{\text{mixed}} = \left(\frac{1}{2} x_A z N - \frac{1}{2} x_A x_B z N\right) \cdot U_{AA} + \left(\frac{1}{2} x_B z N - \frac{1}{2} x_A x_B z N\right) \cdot U_{BB} + x_A x_B z N \cdot U_{AB}$

$$= \frac{1}{2} x_{A} z N \cdot U_{AA} + \frac{1}{2} x_{B} z N \cdot U_{BB} + x_{A} x_{B} z N \cdot \left(U_{AB} - \frac{1}{2} (U_{AA} + U_{BB}) \right)$$

Hence,

$$\Delta H^{\text{mix}} = \Delta U^{\text{mix}}\Big|_{p} = z N \cdot x_{A} x_{B} \cdot \left(U_{\text{AB}} - \frac{1}{2}(U_{\text{AA}} + U_{\text{BB}})\right) = z N \cdot x_{A} x_{B} \cdot \varepsilon$$

Number of Bonds in Random Solutions N_{ij} 5000 AA BB $\frac{1}{2} x_{\rm A} z N - \frac{1}{2} x_{\rm A} x_{\rm B} z N$ $\frac{1}{2} x_{\rm B} z N - \frac{1}{2} x_{\rm A} x_{\rm B} z N$ 4000 Computer generated 3000. arrangements of N = 2304atoms and for 2000*z* = 4 1000 AB 0.4 0.6 0.2 8.0 0.0 1.0 $x_{\rm B}$

Thermodynamic Considerations

ε = 0: ideal solution when no preferred interaction occurs and all bonds are of equal binding energy

- random solutions
- ε < 0:</p>
 - the mixing occurs endothermic with heat consumption and unequal AB bonds are preferred
 - U_{AB} is more negative than $\frac{1}{2}(U_{AA} + U_{BB})$
 - ordering occurs
- *ε* > 0:
 - the mixing occurs exothermic with heat release and equal AA and BB bonds are preferred
 - $\frac{1}{2}(U_{AA} + U_{BB})$ is more negative than U_{AB}
 - clustering or spinodal decomposition occurs

 $\Delta H^{\text{mix}} \propto \varepsilon x_{\text{A}} x_{\text{B}} = \varepsilon x_{\text{A}} (1 - x_{\text{B}})$

Random Solutions

Random Solutions

In systems with tendency to form clusters, a similar distribution of bonds is achieved by a decomposition into two random solutions of different composition.

lamellae of different $x_{\rm B}$

- For slightly negative ΔH^{mix}, two intersections of the *G* curves of solid solution and liquid might be obtained.
- A maximum of the liquidus line can be observed instead of a cigar-like two-phase region.

- For slightly negative ΔH^{mix} , two intersections of the *G* curves of solid solution and liquid might be obtained.
- A maximum of the liquidus line can be observed instead of a cigar-like two-phase region.

- For slightly negative ΔH^{mix}, two intersections of the *G* curves of solid solution and liquid might be obtained.
- A maximum of the liquidus line can be observed instead of a cigar-like two-phase region.

- For slightly negative ΔH^{mix} , two intersections of the *G* curves of solid solution and liquid might be obtained.
- A maximum of the liquidus line can be observed instead of a cigar-like two-phase region.

Congruent Solidification

- For both situations, congruently melting alloys are obtained at the extrema of the liquidus curves. These alloys solidify like elements ($F^* = 0$).
- All other alloys undergo a similar solidification process when trespassing the two-phase region as discussed in Ch. 4b.

Impact of ΔH^{mix} : Miscibility Gap

- For $\Delta H^{\text{mix}} > 0$ in the solid, a miscibility gap occurs at low temperatures due to the temperature-dependent interplay of the $\Delta H^{\text{mix}} =$ const. and $-T \Delta S^{\text{mix}}$.
- At high *T*, the strongly negative ΔS^{mix} dominates the *G* curve and the solid solution is stable in the entire composition range (if the liquid *G* curve does not intersect).
- At low $T < T_c$, two stable solutions occur according to the common tangent.

Impact of ΔH^{mix} : Miscibility Gap

- For $\Delta H^{\text{mix}} > 0$ in the solid, a miscibility gap occurs at low temperatures due to the temperature-dependent interplay of the $\Delta H^{\text{mix}} = \text{const.}$ and $-T \Delta S^{\text{mix}}$.
- At high *T*, the strongly negative ΔS^{mix} dominates the *G* curve and the solid solution is stable in the entire composition range (if the liquid *G* curve does not intersect).
- At low $T < T_c$, two stable solutions occur according to the common tangent.

Binodal vs. Spinodal Line

- Thermodynamic equilibrium is obtained for the two points the common tangent touches the *G* curve. The temperature-dependent composition of the two stable solutions is referred to as binodal line.
- Within the region, a second region can be distinguished for which $\frac{\partial^2 G}{\partial x_B^2} < 0$. The according line is referred to as spinodal line.

Binodal vs. Spinodal Line

- Within the spinodal line, the homogenous solid solution is unstable and decomposition occurs spontaneously without thermal activation (continuous phase transformation, compare to Ch. 3e).
- In the region between spinodal and binodal line, the homogeneous solid solution is metastable and the decomposition occurs by nucleation and growth (discontinuous phase transformation).

Decomposition (Spontaneous, Continuous)

- Consider an alloy of $x_{B,0}$ quenched to the spinodal region. Any decomposition will lead to a decrease of the total G of the system.
- Hence, the diffusion process to mediate the decomposition will occur spontaneously (even though being uphill the concentration gradient).
- The concentration gradients are continuous throughout the process.

Decomposition (Spontaneous, Continuous)

- Consider an alloy of x_{B,0} quenched to the spinodal region. Any decomposition will lead to a decrease of the total *G* of the system.
- Hence, the diffusion process to mediate the decomposition will occur spontaneously (even though being uphill the concentration gradient).
- The concentration gradients are continuous throughout the process.

Decomposition (Spontaneous, Continuous)

- Consider an alloy of x_{B,0} quenched to the spinodal region. Any decomposition will lead to a decrease of the total *G* of the system.
- Hence, the diffusion process to mediate the decomposition will occur spontaneously (even though being uphill the concentration gradient).
- The concentration gradients are continuous throughout the process.

- Consider an alloy of x_{B,0} quenched to between the spinodal and binodal line. Any decomposition will lead to an increase of the total *G* of the system.
- The decomposition occurs via the formation of a distinct interface between the two stable compositions x^{S'}_B and x^{S''}_B during nucleation. The region of x^{S''}_B grows (via interface motion) until equilibrium is achieved.
- Hence, the decomposition requires an activation to overcome this initial energy barrier.

- Consider an alloy of x_{B,0} quenched to between the spinodal and binodal line. Any decomposition will lead to an increase of the total *G* of the system.
- The decomposition occurs via the formation of a distinct interface between the two stable compositions x^{S'}_B and x^{S''}_B during nucleation. The region of x^{S''}_B grows (via interface motion) until equilibrium is achieved.
- Hence, the decomposition requires an activation to overcome this initial energy barrier.

- Consider an alloy of x_{B,0} quenched to between the spinodal and binodal line. Any decomposition will lead to an increase of the total *G* of the system.
- The decomposition occurs via the formation of a distinct interface between the two stable compositions x^{S'}_B and x^{S''}_B during nucleation. The region of x^{S''}_B grows (via interface motion) until equilibrium is achieved.
- Hence, the decomposition requires an activation to overcome this initial energy barrier.
 - super-cooled **metastable** random solid solution

- Consider an alloy of x_{B,0} quenched to between the spinodal and binodal line. Any decomposition will lead to an increase of the total *G* of the system.
- The decomposition occurs via the formation of a distinct interface between the two stable compositions x^{S'}_B and x^{S''}_B during nucleation. The region of x^{S''}_B grows (via interface motion) until equilibrium is achieved.
- Hence, the decomposition requires an activation to overcome this initial energy barrier.

