Phase Transformations in Materials

Lecture for "Mechanical Engineering" and "Materials Science and Engineering" Dr.-Ing. Alexander Kauffmann (Bldg. 10.91, R. 375)
Dr. Sandipan Sen (BIdg. 10.91, R. 311)
Version 24-01-14

Topics

- Spinodal Decomposition (Miscibility Gap)
- Regular Solutions with $\Delta H_{\text {mix }} \neq 0$
- Order, Clustering, Decomposition
- Extrema of the Liquidus Line
- Miscibility Gap
- Continuous and Discontinuous Decomposition

Thermodynamic Considerations

- As seen in Ch. 4a, G of the alloy can be obtained based on a linear superposition of the G of the individual elements, G_{A} and G_{B}, and an excess term $\Delta G^{\text {mix }}$:

$$
G=x_{\mathrm{A}} G_{\mathrm{A}}+x_{\mathrm{B}} G_{\mathrm{B}}+\Delta G^{\text {mix }}
$$

$\Delta G^{\text {mix }}$ refers to $\Delta H^{\text {mix }}$ and $\Delta S_{\text {mix }}$, when comparing the condition of separated elements A and B and randomly mixed A and B :

$$
\Delta G^{\text {mix }}=\Delta H^{\text {mix }}-T \Delta S^{\text {mix }}
$$

- For regular solutions, we consider $\Delta H^{\text {mix }} \neq 0$.

Thermodynamic Considerations

- An estimate might be to consider the change of internal energy by the different (nearest neighbor) bond energies $U_{i j}$ depending on the binding partner:

$$
U=N_{\mathrm{AA}} \cdot U_{\mathrm{AA}}+N_{\mathrm{BB}} \cdot U_{\mathrm{BB}}+N_{\mathrm{AB}} \cdot U_{\mathrm{AB}}
$$

- Note that $U_{i j}<0$ and a stronger bond is achieved for a more negative $U_{i j}$. In order to remove atoms from the bond, the energy of the system increases to zero.
- As for the configurational entropy, the change in internal energy by the mixing process needs to be consider to obtain $\Delta H^{\text {mix }}=\left.\Delta U^{\text {mix }}\right|_{p}$.

Thermodynamic Considerations

- When the elements are separated in a 2D cubic crystal (Kossel crystal with the coordination number $z=4$ and a binding energy of $U_{i j}$), it amounts to:

$$
U^{\text {separat }}=\frac{1}{2} x_{A} z N \cdot U_{A A}+\frac{1}{2} x_{B} z N \cdot U_{B B}
$$

- For random mixing, $x_{\mathrm{A}} x_{\mathrm{B}} z N$ dissimilar bonds might be created:

$$
\begin{aligned}
& U^{\text {mixed }}=\left(\frac{1}{2} x_{\mathrm{A}} z N-\frac{1}{2} x_{\mathrm{A}} x_{\mathrm{B}} z N\right) \cdot U_{\mathrm{AA}}+\left(\frac{1}{2} x_{\mathrm{B}} z N-\frac{1}{2} x_{\mathrm{A}} x_{\mathrm{B}} z N\right) \cdot U_{\mathrm{BB}}+x_{\mathrm{A}} x_{\mathrm{B}} z N \cdot U_{\mathrm{AB}} \\
& =\frac{1}{2} x_{\mathrm{A}} z N \cdot U_{\mathrm{AA}}+\frac{1}{2} x_{\mathrm{B}} z N \cdot U_{\mathrm{BB}}+x_{\mathrm{A}} x_{\mathrm{B}} z N \cdot\left(U_{\mathrm{AB}}-\frac{1}{2}\left(U_{\mathrm{AA}}+U_{\mathrm{BB}}\right)\right)
\end{aligned}
$$

- Hence,

$$
\Delta H^{\mathrm{mix}}=\left.\Delta U^{\mathrm{mix}}\right|_{p}=z N \cdot x_{A} x_{B} \cdot\left(U_{\mathrm{AB}}-\frac{1}{2}\left(U_{\mathrm{AA}}+U_{\mathrm{BB}}\right)\right)=z N \cdot x_{A} x_{B} \cdot \varepsilon
$$

Number of Bonds in Random Solutions

Thermodynamic Considerations

$\Delta H^{\operatorname{mix}} \propto \varepsilon x_{\mathrm{A}} x_{\mathrm{B}}=\varepsilon x_{\mathrm{A}}\left(1-x_{\mathrm{B}}\right)$

- $\varepsilon=0$:
- ideal solution when no preferred interaction occurs and all bonds are of equal binding energy
- random solutions
- $\varepsilon<0$:
- the mixing occurs endothermic with heat consumption and unequal AB bonds are preferred
- U_{AB} is more negative than $\frac{1}{2}\left(U_{\mathrm{AA}}+U_{\mathrm{BB}}\right)$
- ordering occurs
- $\varepsilon>0$:
- the mixing occurs exothermic with heat release and equal AA and BB bonds are preferred
- $\frac{1}{2}\left(U_{\mathrm{AA}}+U_{\mathrm{BB}}\right)$ is more negative than U_{AB}
- clustering or spinodal decomposition occurs

Random Solutions

Deviations from Random Solutions

Computer generated
arrangements of $N=2304$
atoms and for $z=4$ at
atoms and
$x_{B}=0.5$

regions of order

$$
\varepsilon<0
$$

Deviations from Random Solutions

- Regions of local order increase the number of AB bonds while the number of AA and BB bonds decreases in comparison to the random solution.

$N_{i j}$

$$
\varepsilon<0
$$

Deviations from Random Solutions

- In the fully ordered state, only AB bonds are present.

Random Solutions

Deviations from Random Solutions

Computer generated
arrangements of $N=2304$
atoms and for $z=4$ at
$x_{\mathrm{B}}=0.5$

clusters of B

Deviations from Random Solutions

- Clustering of B leads to an increase of $A A$ and $B B$ bonds while the number of $A B$ bonds decreases in comparison to the random solution.

$N_{i j}$

clusters of B

Computer generated arrangements of $N=2304$ atoms and for $z=4$ at $x_{\mathrm{B}}=0.5$
$\varepsilon>0$

Deviations from Random Solutions

- Full separation of the two species leads to maximum amount of AA and BB bonds. The number of $A B$ bonds depends on the interface area between the two species.

$$
\varepsilon>0
$$

Deviations from Random Solutions

Computer generated
arrangements of $N=2304$ atoms and for $z=4$ at $x_{\mathrm{B}}=0.5$

clusters of A

Deviations from Random Solutions

- Clustering of A leads to an increase of $A A$ and $B B$ bonds while the number of $A B$ bonds decreases in comparison to the random solution.

$N_{i j}$

clusters of A

Computer generated arrangements of $N=2304$ atoms and for $z=4$ at $x_{\mathrm{B}}=0.5$

$$
\varepsilon>0
$$

Deviations from Random Solutions

- Full separation of the two species leads to maximum amount of AA and BB bonds. The number of $A B$ bonds depends on the interface area between the two species.

$$
\varepsilon>0
$$

Deviations from Random Solutions

- In systems with tendency to form clusters, a similar distribution of bonds is achieved by a decomposition into two random solutions of different composition.

lamellae of different x_{B}

$\varepsilon>0$

Impact of $\Delta H^{\text {mix }}$: Extrema of the Liquidus Line

- For slightly negative $\Delta H^{\text {mix }}$, two intersections of the G curves of solid solution and liquid might be obtained.
- A maximum of the liquidus line can be observed instead of a cigar-like two-phase region.

Impact of $\Delta H^{\text {mix }}$: Extrema of the Liquidus Line

Impact of $\Delta H^{\text {mix }}$: Extrema of the Liquidus Line

- For slightly negative $\Delta H^{\text {mix }}$, two intersections of the G curves of solid solution and liquid might be obtained.
- A maximum of the liquidus line can be observed instead of a cigar-like two-phase region.

Impact of $\Delta H^{\text {mix }}$: Extrema of the Liquidus Line

Congruent Solidification

- For both situations, congruently melting alloys are obtained at the extrema of the liquidus curves. These alloys solidify like elements ($F^{*}=0$).
- All other alloys undergo a similar solidification process when trespassing the two-phase region as discussed in Ch. 4b.

Impact of $\Delta H^{\text {mix }}$: Miscibility Gap

- For $\Delta H^{\text {mix }}>0$ in the solid, a miscibility gap occurs at low temperatures due to the temperature-dependent interplay of the $\Delta H^{\mathrm{mix}}=$ const. and $-T \Delta S^{\text {mix }}$.
- At high T, the strongly negative $\Delta S^{\text {mix }}$ dominates the G curve and the solid solution is stable in the entire composition range (if the liquid G curve does not intersect).
- At low $T<T_{\mathrm{c}}$, two stable solutions occur according to the common tangent.

Impact of $\Delta H^{\text {mix }}$: Miscibility Gap

- For $\Delta H^{\text {mix }}>0$ in the solid, a miscibility gap occurs at low temperatures due to the temperature-dependent interplay of the $\Delta H^{\mathrm{mix}}=$ const. and $-T \Delta S^{\text {mix }}$.
- At high T, the strongly negative $\Delta S^{\text {mix }}$ dominates the G curve and the solid solution is stable in the entire composition range (if the liquid G curve does not intersect).
- At low $T<T_{\mathrm{c}}$, two stable solutions occur according to the common tangent.

Binodal vs. Spinodal Line

- Thermodynamic equilibrium is obtained for the two points the common tangent touches the G curve. The temperature-dependent composition of the two stable solutions is referred to as binodal line.
- Within the region, a second region can be distinguished for which $\frac{\partial^{2} G}{\partial x_{\mathrm{B}}^{2}}<0$. The according line is referred to as spinodal line.

Binodal vs. Spinodal Line

- Within the spinodal line, the homogenous solid solution is unstable and decomposition occurs spontaneously without thermal activation (continuous phase transformation, compare to Ch. 3e).
- In the region between spinodal and binodal line, the homogeneous solid solution is metastable and the decomposition occurs by nucleation and growth (discontinuous phase
 transformation).

Decomposition (Spontaneous, Continuous)

- Consider an alloy of $x_{\mathrm{B}, 0}$ quenched to the spinodal region. Any decomposition will lead to a decrease of the total G of the system.
- Hence, the diffusion process to mediate the decomposition will occur spontaneously (even though being uphill the concentration gradient).
- The concentration gradients are continuous throughout the process.

Decomposition (Spontaneous, Continuous)

- Consider an alloy of $x_{\mathrm{B}, 0}$ quenched to the spinodal region. Any decomposition will lead to a decrease of the total G of the system.
- Hence, the diffusion process to mediate the decomposition will occur spontaneously (even though being uphill the concentration gradient).
- The concentration gradients are continuous throughout the process.

Decomposition (Spontaneous, Continuous)

x_{B}

- Consider an alloy of $x_{\mathrm{B}, 0}$ quenched to the spinodal region. Any decomposition will lead to a decrease of the total G of the system.
- Hence, the diffusion process to mediate the decomposition will occur spontaneously (even though being uphill the concentration gradient).
- The concentration gradients are continuous throughout the process.

Decomposition (Nucl. and Gr., Discontinuous)

- Consider an alloy of $x_{\mathrm{B}, 0}$ quenched to between the spinodal and binodal line. Any decomposition will lead to an increase of the total G of the system.
- The decomposition occurs via the formation of a distinct interface between the two stable compositions $x_{\mathrm{B}}^{\mathrm{S}^{\prime}}$ and $x_{\mathrm{B}}^{\mathrm{S}^{\prime \prime}}$ during nucleation. The region of $x_{\mathrm{B}}^{\mathrm{S}^{\prime \prime}}$ grows (via interface motion) until equilibrium is achieved.
- Hence, the decomposition requires an activation to overcome this initial energy
 barrier.

Decomposition (Nucl. and Gr., Discontinuous)

- Consider an alloy of $x_{\mathrm{B}, 0}$ quenched to between the spinodal and binodal line. Any decomposition will lead to an increase of the total G of the system.
- The decomposition occurs via the formation of a distinct interface between the two stable compositions $x_{\mathrm{B}}^{\mathrm{S}^{\prime}}$ and $x_{\mathrm{B}}^{\mathrm{S}^{\prime \prime}}$ during nucleation. The region of $x_{\mathrm{B}}^{\mathrm{S}^{\prime \prime}}$ grows (via interface motion) until equilibrium is achieved.
- Hence, the decomposition requires an activation to overcome this initial energy
 barrier.

Decomposition (Nucl. and Gr., Discontinuous)

- Consider an alloy of $x_{\mathrm{B}, 0}$ quenched to between the spinodal and binodal line. Any decomposition will lead to an increase of the total G of the system.
- The decomposition occurs via the formation of a distinct interface between the two stable compositions $x_{\mathrm{B}}^{\mathrm{S}^{\prime}}$ and $x_{\mathrm{B}}^{\mathrm{S}^{\prime \prime}}$ during nucleation. The region of $x_{\mathrm{B}}^{\mathrm{S}^{\prime \prime}}$ grows (via interface motion) until equilibrium is achieved.
- Hence, the decomposition requires an activation to overcome this initial energy barrier.

Decomposition (Nucl. and Gr., Discontinuous)

- Consider an alloy of $x_{\mathrm{B}, 0}$ quenched to between the spinodal and binodal line. Any decomposition will lead to an increase of the total G of the system.
- The decomposition occurs via the formation of a distinct interface between the two stable compositions $x_{\mathrm{B}}^{\mathrm{S}^{\prime}}$ and $x_{\mathrm{B}}^{\mathrm{S}^{\prime \prime}}$ during nucleation. The region of $x_{\mathrm{B}}^{\mathrm{S}^{\prime \prime}}$ grows (via interface motion) until equilibrium is achieved.
- Hence, the decomposition requires an activation to overcome this initial energy barrier.

