

Plasticity

Lecture for "Mechanical Engineering" and "Materials Science and Engineering" Dr.-Ing. Alexander Kauffmann (Bldg. 10.91, R. 375) Dr.-Ing. Daniel Schliephake (Bldg. 10.91, R. 352)

Version 24-04-02

www.kit.edu

- Ch. 0: General Information
 - Appointments
 - Credits
 - Topics
 - Literature
 - Software
- Ch. 1: Introduction

Relevance of Plasticity in Industry and Research

- Ch. 2: Macroscopic Features of Plastic Deformation
 - Stress-Strain Curve of Common Metallic Materials
- Ch. 3: Fundamentals and Interrelations to Other Lectures Appointments
 - Fundamental Concepts of Elasticity
 - Macroscopic Strength and Strengthening/Hardening
 - Fundamentals of Crystallography
 - Fundamentals of Defects in Crystalline Solids

Ch. 4: Dislocations

- Fundamental Concept
- Observation of Dislocations
- Properties of Dislocations
- Interaction of Dislocations
- Motion of Dislocations
- Multiplication of Dislocations
- Dislocations in fcc Metals
- Dislocations in bcc Metals
- Dislocations in hcp Metals and Complex Intermetallics

- Ch. 5: Single Crystal Plasticity
 - General Stages of Plastic Deformation and Fundamentals of the Stress-Strain Curve (fcc Metals)
 - Influence of Temperature, Orientation, Strain Rate, etc. (fcc Metals)
 - Further Examples (Extension of the Results to bcc, hcp and Intermetallic Materials)
 - Deformation Twinning in Single-Crystals

Ch. 6: Plasticity of Polycrystalline Materials

- Transition from Single Crystals to Polycrystals
- Strength of Polycrystals
- Solute Atoms
- Dislocations (incl. Dislocation Patterning)
- Grain Boundaries (incl. Homogenization of Critical Stress)
- Precipitates and Dispersoids

Ch. 7: Other Mechanisms of Plastic Deformation

