

Plasticity

Lecture for "Mechanical Engineering" and "Materials Science and Engineering" Dr.-Ing. Alexander Kauffmann (Bldg. 10.91, R. 375) Dr.-Ing. Daniel Schliephake (Bldg. 10.91, R. 352)

Version 24-06-14

www.kit.edu

- Macroscopic Deformation: Stress Strain Curve in Tensile Tests
 - Sample Shapes
 - Tensile Test Setup
 - Quantities
 - Loading
 - Engineering Strain, Engineering Stress
 - Elastic Deformation: Stiffness/Compliance
 - Elastic-Plastic Deformation: Offset Strength
 - Localized Plastic Deformation I: Ultimate Tensile Strength, Uniform Strain
 - True strain, True stress, Work/Strain-Hardening
 - Considère Criterion
 - Localized Deformation II: Pronounced Yielding, Lüders Bands, Portevin-Le-Chatelier Effect

Revision from Other Lectures

As discussed in Ch. 1, multiple tests for the assessment of mechanical behavior exist. However, the most relevant test is still the tensile test. This chapter extensively discusses peculiarities of such tests on metallic materials. For complications in other test scenarios, we refer to other lectures.

- How is a tensile test done?
 - Which sample shapes are usually used in tensile tests?
 - Which quantities are typically controlled during the tests?
 - Which quantities are usually detected?

Sample Shapes

Technical drawing of a tensile test specimen taken from flat semi-finished products, like tapes or flat bars:

- In best case, the grip sections of typical tensile test specimen allow for proper force transmission into the sample.
- The stress state and distribution at least within the gauge length should be:
 - uniaxial stress state
 - homogeneous stress state across the cross section and along the length

Sample Shapes

Technical drawing of a tensile test specimen taken from cylindrical semi-finished products, like rods or wires:

- In best case, the grip sections of typical tensile test specimen allow for proper force transmission into the sample.
- The stress state and distribution at least within the gauge length should be:
 - uniaxial stress state
 - homogeneous stress state across the cross section and along the length

Setup

Setup

Setup

Quantities

- During the test, following quantities are typically recorded:
 - Force
 - Cross Head Position
 - Strain
- Force is measured by load cells of different technology. They differ in precision, linearity, sensitivity and force range (e.g. tension and compression).
- Strain is measured in different ways, e.g. tactile by attachment gauges, DMS gauges, optical by digital image correlation.

Different types of load cells and strain measurement systems:

https://www.zwickroell.com/fileadmin/content/Files/SharePoint/user_upload/Brochures_DE/Industry_Brochures/99_253_Pruefmaschinen_und_Pruefsysteme_fuer_Metall_D_DE.pdf https://www.instron.com/de-de/products/testing-accessories/extensometers/high-temperature/950-deg-c/2632-056 https://www.zwickroell.com/fileadmin/content/Files/SharePoint/user_upload/PI_EN/08_684_videoXtens_biax_2_150_HP_PI_EN.pdf https://www.nextgentest.com/blog/the-importance-of-an-extensometer-in-materials-testing/

Loading

- In most cases, loading occurs at constant, slow cross head velocity in order to achieve a quasistatic test at *initial* strain rates of typically 10⁻⁵ to 10⁻³ s⁻¹.
- Only in special cases, a strain-controlled or force-controlled test is performed with a closedloop control (strain/force is recorded and cross head speed is adjusted to meet constant strain/force rate)

Karlsruhe Institute of Technology

Comparison of signals obtained during tensile tests:

IAM Institute for Applied Materials

Plasticity in Metals, Alloys and Intermetallics

The chapter will deal with the macroscopic interpretation of simple mechanical tests.

Example: tensile test conducted on A1 CoCrFeMnNi (recrystallized 800 °C/vacuum/1 h/water-quenched, 4 mm diameter) at room temperature

Stages of Tensile Tests

- Stages of the deformation during the tensile test:
 - Linear-elastic deformation
 (reversible (almost) without internal friction)
 - Elastic-plastic deformation
 (partially reversible, partially irreversible)
 - Elastic-plastic deformation with necking
 (localization of plastic deformation)
- Mostly presented using engineering quantities:
 - Engineering strain $\varepsilon_{eng} = \frac{\Delta l}{l_0}$

(sometimes "total strain")

• Engineering stress
$$\sigma_{\text{eng}} = \frac{F}{A_0}$$

(sometimes "nominal stress")

Example: tensile test conducted on A1 CoCrFeMnNi (recrystallized 800 °C/vacuum/1 h/water-quenched, 4 mm diameter) at room temperature

Linear-Elastic Deformation

The linear-elastic region can be described by Hooke's law:

 $\sigma_{\rm eng} = E \cdot \varepsilon_{\rm eng}.$

- E is the resistance against elastic deformation and called Young's modulus.
- In case of polycrystals, *E* corresponds to an averaging of the compliance/stiffness values weight by the orientations distribution function (see Ch. 3). It mostly determined by the base element of an alloy, its crystal structure and bond type.
- *E* is one particular stiffness property. Depending on the loading conditions, there are also other stiffness properties, like for example *G* with $\tau = G \cdot$

 γ or K with $p = -K \cdot \frac{\Delta V}{V}$.

Example: tensile test conducted on A1 CoCrFeMnNi (recrystallized 800 °C/vacuum/1 h/water-quenched, 4 mm diameter) at room temperature

A. S. Tirunilai: "Peculiarities of deformation of CoCrFeMnNi at cryogenic temperatures", Journal of Materials Research 33 (2018) 3287-3300

Karlsruhe Institute of Technology

Isotropic, Linear-Elastic Deformation

Material	Prototype	Strukturbericht	<i>G /</i> GPa	ν/1	E / GPa
Cu	Cu	A1	48	0.34	130
AI			26	0.34	70
Au			28	0.42	79
Ni			76	0.31	201
α-Fe	۱۸/	A2	82	0.29	212
W	٧V		160	0.28	411
Mg		A3	17	0.29	45
Zn	Mg		42	0.25	104
α-Ti			44	0.32	117
Si	diamond	A4	80	0.22	145
NaCl	NaCl	B1	20	0.34	53

G. W. C. Kaye & T. H. Laby: "Tables of Physical and Chemical Constants", Essex, England; New York: Longman (1995)

M. Matsui: "Simultaneous sound velocity and density measurements of NaCl at high temperatures and pressures: Application as a primary pressure standard",

American Mineralogist 97 (2012) 1670-1675

Elastic-Plastic Deformation

- In the elastic-plastic region, some portion of the deformation is irreversible.
- The onset of plastic deformation is called yield strength σ_y and determines the resistance against plastic deformation.
- In the case of rather continuous stressstrain curves without pronounced yielding, offset strength is used to describe onset of plastic deformation. For example σ_{0.2} is the resistance against 0.2% plastic strain.
- Anyhow, both quantities indicate macroscopic strength. Microscopic plasticity is taking place also at stresses below σ_y.

Example: tensile test conducted on A1 CoCrFeMnNi (recrystallized 800 °C/vacuum/1 h/water-quenched, 4 mm diameter) at room temperature

Elastic-Plastic Deformation

- In some cases, a pronounced yield point phenomenon occurs.
- It is a result of localized plastic deformation as discussed in the later part of Ch. 2.
- Apart from σ_y, an upper σ_{y,u} and lower yield strength σ_{y,l} are differentiated if a drop in stress occurs after initiation of plastic deformation.
- In case of a pronounced yield point, a yield point elongation (better yield point strain) or Lüders strain ε_L can be determined.

Example: tensile test conducted on normalized C45 plain carbon steel (880 °C/air/30 min/air-cooled, 4 mm diameter) at room temperature

Elastic-Plastic Deformation

Example: tensile test conducted on A1 CoCrFeMnNi (recrystallized 800 °C/vacuum/1 h/water-quenched, 4 mm diameter) at room temperature

- During unloading, the elastic deformation almost* resets.
- Onset of plasticity during re-loading is observed at a higher stress in comparison to the initially undeformed material. This is called strain- or workhardening.

* Bauschinger effect

Necking

- Ultimate tensile strength σ_m determines the maximum engineering stress that the sample can resist. Beyond σ_m, the sample exhibits necking and the plastic deformation becomes localized to a small portion of the gauge length.
- Plastic strain which achieved up to σ_m is called uniform elongation ε_u (common but imprecise; better to use uniform strain).
- Necking occurs due to the mechanicalgeometrical instability of the tensile test.

Example: tensile test conducted on A1 CoCrFeMnNi (recrystallized 800 °C/vacuum/1 h/water-quenched, 4 mm diameter) at room temperature

- For further analysis, the introduction of instantaneous stresses and strains is useful, true strain and true stress:
 - $d\varepsilon_{true} = \frac{dl}{l}$, hence, $\varepsilon_{true} = \ln \frac{l}{l_0}$ • $\sigma_{true} = \frac{F}{A}$
- Assuming uniform elongation (prismatic sample shape) and volume conservation:

•
$$V = A_0 l_0 = A l = \text{const.}$$

• hence,
$$A = \frac{A_0}{1 + \varepsilon_{eng}}$$

gives

•
$$\sigma_{\rm true} = \sigma_{\rm eng} \left(1 + \varepsilon_{\rm eng} \right)$$

• $\varepsilon_{\text{true}} = \ln(1 + \varepsilon_{\text{eng}})$

Example: tensile test conducted on A1 CoCrFeMnNi (recrystallized 800 °C/vacuum/1 h/water-quenched, 4 mm diameter) at room temperature

Direct comparison of $\varepsilon_{\rm true}$ and $\varepsilon_{\rm eng}$ as a function of $\varepsilon_{\rm eng}$.

Direct comparison of $\sigma_{\rm true}$ and $\sigma_{\rm eng}$ as a function of $\varepsilon_{\rm eng}$.

- Volume conservation is an assumption not a prerequisite, also for plastic deformation!
- Strictly, volume conservation requests a Poisson's ratio of v = 0.5. For the elastic region, v is typically about 0.3, it continuously increases to 0.5 after yielding. The deviations are usually neglected when converting from engineering to true quantities.
- In the necking region, the analytical conversion from engineering to true quantities is not possible anymore. You need to locally resolve strain and stress, for example by <u>DIC</u>.

Example: tensile test conducted on A1 CoCrFeMnNi (recrystallized 800 °C/vacuum/1 h/water-quenched, 4 mm diameter) at room temperature

• Describes the negative ratio of axial strain ε_{ax} and transversal strain ε_{tr} under uniaxial tension/compression:

$$v = -\frac{\varepsilon_{\rm tr}}{\varepsilon_{\rm ax}}$$

Volume change during deformation:

$$V_0 = A_0 l_0 \qquad \qquad V = A l$$

Assuming a prismatic rod shape:

$$A_{0} = \frac{\pi}{4} d_{0}^{2} \qquad A = \frac{\pi}{4} d^{2}$$
$$V_{0} = \frac{\pi}{4} d_{0}^{2} l_{0} \qquad V = \frac{\pi}{4} d^{2} l$$
$$\frac{V - V_{0}}{V_{0}} = \frac{d^{2} l - d_{0}^{2} l_{0}}{d_{0}^{2} l_{0}} = \frac{d^{2} l}{d_{0}^{2} l_{0}} - 1$$

Volume change during deformation:

Assuming a prismatic rod shape:

Volume change during deformation:

- Loading of a sample in tensile geometry leads to two different contributions to the force:
 - Geometrical softening: during loading, the cross section of the sample becomes smaller. In case of nil resistance against further deformation, the force needed to deform would become smaller.
 - Intrinsic strengthening: The material itself workhardens; its yield strength is continuously increasing.

Example: tensile test conducted on A1 CoCrFeMnNi (recrystallized 800 °C/vacuum/1 h/water-quenched, 4 mm diameter) at room temperature

- Up to the uniform strain, the tensile test is stable.
- Any perturbation of the cross sectional area results in localized plastic deformation due to stress concentration.
- The localized plastic deformation leads to a sufficient work-hardening to prevent further localization.
- Hence, the localization of plastic deformation is stopped by the intrinsic work-hardening.

Example: tensile test conducted on A1 CoCrFeMnNi (recrystallized 800 °C/vacuum/1 h/water-quenched, 4 mm diameter) at room temperature

- Beyond the uniform strain, any perturbation of the cross sectional area still leads to localization of plastic deformation due to stress concentration.
- The intrinsic work-hardening is not sufficient to prevent the further stress concentration by the further decreasing cross sectional area. The test is unstable.
- The sample is only deforming at the weakest perturbation and necking occurs.
 (Note that the perturbation must not only be of geometrical nature, a locally smaller strength can also be point of necking initiation.)

Example: tensile test conducted on A1 CoCrFeMnNi (recrystallized 800 °C/vacuum/1 h/water-quenched, 4 mm diameter) at room temperature

A. S. Tirunilai: "Peculiarities of deformation of CoCrFeMnNi at cryogenic temperatures", Journal of Materials Research 33 (2018) 3287-3300

Karlsruhe Institute of Technology

Notch Effect and Stress Concentration

- Example for force flow in a cylindrical sample with round notch under tension load.
- The flow lines follow the principle stress directions.
- The density of the flow lines corresponds to the local stress.
- The notch causes:
 - (1) **locally higher stress** $\sigma_k > \sigma_n$ due to the reduced cross sectional area
 - (2) a stress concentration $\sigma_{max} \gg \sigma_k > \sigma_n$ in the notch surface due to adoption of force flow
 - (3) multiaxial stress state in the notch region

The detrimental effect of the notch depends on its sharpness ρ and depth (D - d)/2. The round notch $(\rho = (D - d)/2)$ with d =90 % *D* results in a stress concentration of $\frac{\sigma_{\text{max}}}{\sigma_{\text{k}}} = 2.7!$ Extreme cases of notches are cracks that exhibit essentially atomic sharp tip radii and depth according to the crack length.

Schematic of the force flow in a rod with circumferential notch loaded by the force *F* in axial direction.

Notch Effect and Stress Concentration

Schematic of the force flow in a rod with circumferential notch loaded by the force *F* in axial direction.

- Example for force flow in a cylindrical sample with round notch under tension load.
- The flow lines follow the principle stress directions.
- The density of the flow lines corresponds to the local stress.
- The notch causes:
 - (1) **locally higher stress** $\sigma_k > \sigma_n$ due to the reduced cross sectional area
 - (2) a stress concentration $\sigma_{max} \gg \sigma_k > \sigma_n$ in the notch surface due to adoption of force flow
 - (3) multiaxial stress state in the notch region

The detrimental effect of the notch depends on its sharpness ρ and depth (D - d)/2. The round notch $(\rho = (D - d)/2)$ with d =90 % *D* results in a stress concentration of $\frac{\sigma_{\text{max}}}{\sigma_{\text{k}}} = 2.7!$ Extreme cases of notches are cracks that exhibit essentially atomic sharp tip radii and depth according to the crack length.

Notch Effect and Stress Concentration

- The flow lines follow the principle stress directions.
- The density of the flow lines corresponds to the local stress.
- The notch causes:
 - (1) **locally higher stress** $\sigma_k > \sigma_n$ due to the reduced cross sectional area
 - (2) a stress concentration $\sigma_{max} \gg \sigma_k > \sigma_n$ in the notch surface due to adoption of force flow
 - (3) multiaxial stress state in the notch region

The detrimental effect of the notch depends on its sharpness ρ and depth (D - d)/2. The round notch $(\rho = (D - d)/2)$ with d =90 % *D* results in a stress concentration of $\frac{\sigma_{\text{max}}}{\sigma_{\text{k}}} = 2.7!$ Extreme cases of notches are cracks that exhibit essentially atomic sharp tip radii and depth according to the crack length.

Schematic of the force flow in a rod with circumferential notch loaded by the force *F* in axial direction.

The stable test requests that the force carried along the sample axis x is constant:

 $F = \sigma_{\text{true}}(x) \cdot A(x) = \text{const.} \ \forall x$

The force needed for elongation changes during the test with:

$$\frac{\mathrm{d}F}{\mathrm{d}\varepsilon_{\mathrm{true}}} = A \, \frac{\mathrm{d}\sigma_{\mathrm{true}}}{\mathrm{d}\varepsilon_{\mathrm{true}}} + \sigma_{\mathrm{true}} \, \frac{\mathrm{d}A}{\mathrm{d}\varepsilon_{\mathrm{true}}}$$

 $\frac{d\sigma_{true}}{d\varepsilon_{true}}$... intrinsic work-hardening of the material $\frac{dA}{d\varepsilon_{true}}$... geometric softening $\left(\frac{dA}{d\varepsilon_{true}} < 0 \text{ during tensile tests}\right)$ Example: tensile test conducted on A1 CoCrFeMnNi (recrystallized 800 °C/vacuum/1 h/water-quenched, 4 mm diameter) at room temperature

A. S. Tirunilai: "Peculiarities of deformation of CoCrFeMnNi at cryogenic temperatures", Journal of Materials Research 33 (2018) 3287-3300

Karlsruhe Institute of Technology

A stable test request continuously increasing force:

Considère criterion

(should always be used for determination of the uniform strain, especially for materials with low work-hardening rates)

Example: tensile test conducted on A1 CoCrFeMnNi (recrystallized 800 °C/vacuum/1 h/water-quenched, 4 mm diameter) at room temperature

A. S. Tirunilai: "Peculiarities of deformation of CoCrFeMnNi at cryogenic temperatures", Journal of Materials Research 33 (2018) 3287-3300

Karlsruhe Institute of Technology

- This is counter-intuitive: high ductility (high ability to deform plastic) is observed when work-hardening is high and remains high.
- This is what excels TWIP and TRIP steels due to the dynamic refinement of the microstructure.
- Further contributions to work-hardening will be discussed in Chs. 4, 5 and 6.
- In some cases, details of plastic deformation might prevent reaching Considère criterion. Potential reasons are discussed in Ch. 6.

Example: tensile test conducted on A1 CoCrFeMnNi (recrystallized 800 °C/vacuum/1 h/water-quenched, 4 mm diameter) at room temperature

- In case mechanical tests are free of geometrical softening, e.g. compression tests and torsion tests, no necking due to geometrical-mechanical instability occurs!
- The plastic strains achieved in these tests are by definition higher.

Example: tensile test conducted on A1 CoCrFeMnNi (recrystallized 800 °C/vacuum/1 h/water-quenched, 4 mm diameter) at room temperature

- In the engineering disciplines, ductility is often assessed based on strains to fracture ε_f.
- However, the size of the necking region only depends on the cross sectional area and samples of different length exhibit different strains to fracture while being equally ductile!
- Hence, strain to fracture is inappropriate to judge material's intrinsic ductility.
- Comparison of different samples requests constant $l_0/\sqrt{A_0}$ ratio.

Example: tensile test conducted on A1 CoCrFeMnNi (recrystallized 800 °C/vacuum/1 h/water-quenched, 4 mm diameter) at room temperature

A. S. Tirunilai: "Peculiarities of deformation of CoCrFeMnNi at cryogenic temperatures", Journal of Materials Research 33 (2018) 3287-3300

Karlsruhe Institute of Technology

For samples of the same initial cross-sectional area, the same plastic elongation Δl_n within the necking region is achieved. For different initial length $l'_0 < l''_0$, different strains to fracture $\varepsilon'_f > \varepsilon''_f$ are obtained since the uniform strains $\varepsilon_u = \frac{\Delta l'_u}{l'_0} = \frac{\Delta l''_u}{l''_0}$ are unaffected by the total length:

For samples of the same initial cross-sectional area, the same plastic elongation Δl_n within the necking region is achieved. For different initial length $l'_0 < l''_0$, different strains to fracture $\varepsilon'_f > \varepsilon''_f$ are obtained since the uniform strains $\varepsilon_u = \frac{\Delta l'_u}{l'_0} = \frac{\Delta l''_u}{l''_0}$ are unaffected by the total length:

Mechanical Properties

Material	Condition			$\sigma_{ m y}~{f or}~\sigma_{ m y,u}~{f or}$ $\sigma_{ m 0.2}$ /MPa	$\sigma_{ m m}/{ m MPa}$	$\sigma_{ m m}/\sigma_{ m y}$	$arepsilon_{ m f}/\%$
C45	Normalized	• 840 880 °C/air-cooled	$d \le 16 \text{ mm}$ $t \le 16 \text{ mm}$	> 340	> 620	≈ 1.8	> 14
	Quenched & tempered	 820 860 °C/oil- or water-quenched 550 660 °C 	$d \le 16 \text{ mm}$ $t \le 8 \text{ mm}$	> 490	700 850	≈ 1.7	> 14
42CrMo4	Quenched & tempered	 820 860 °C/oil- or water-quenched 540 680 °C 	$d \le 16 \text{ mm}$ $t \le 8 \text{ mm}$	> 900	1100 1300	≈ 1.4	> 10
X2CrNiMo17-12-2	Solution Treated	• 1030 1100 °C/air- or water-cooled	$d \le 8 \text{ mm}$	> 240	530 680	≈ 2.8	> 40
Cu-OF	R200	well annealed	$d \le 5 \text{ mm}$	< 100	200 250	> 2.0	> 42
	R290	deformed	$d \le 15 \text{ mm}$	> 250	290 360	> 1.2	> 6
CuZn30	R270	well annealed	$d \le 5 \text{ mm}$	< 160	270 350	> 1.7	> 50
	R410	deformed	$d \le 5 \text{ mm}$	> 260	410 490	> 1.6	> 15

DIN EN ISO 683-1: Für eine Wärmebehandlung bestimmte Stähle, legierte Stähle und Automatenstähle – Teil 1: Unlegierte Vergütungsstähle DIN EN ISO 683-2: Für eine Wärmebehandlung bestimmte Stähle, legierte Stähle und Automatenstähle – Teil 2: Legierte Vergütungsstähle DIN EN 10088-2: Nichtrostende Stähle – Teil 2: Technische Lieferbedingungen für Blech und Band aus korrosionsbeständigen Stählen für allgemeine Verwendung DIN EN 1652: Kupfer und Kupferlegierungen, Platten, Bleche, Bänder, Streifen und Ronden zur allgemeinen Verwendung

All by DIN e.V. and published Berlin: Beuth Verlag GmbH

- Localized deformation does not only contribute to effects at high plastic strains.
- It can also play a vital role in yielding.
 Pronounced yielding occurs when two distinct strength values occur: higher (onset of any plasticity) and lower (maintain plasticity).
- At yield point, a characteristic (plastic)
 Lüders strain is released.

Schematic illustration of a pronounced yield point phenomenon:

- Localized deformation does not only contribute to effects at high plastic strains.
- It can also play a vital role in yielding.
 Pronounced yielding occurs when two distinct strength values occur: higher (onset of any plasticity) and lower (maintain plasticity).
- At yield point, a characteristic (plastic)
 Lüders strain is released.

*Example: tensile test conducted on normalized C45 plain carbon steel (*880 °C*/air/*30 min*/air-cooled,* 4 mm *diameter) at room temperature*

Karlsruhe Institute of Technology

concentrations sufficient to initiate local plastic deformation by surpassing the upper yield strength. The **discontinuities move** through the sample while leaving material behind that is deformed up to the

Pronounced Yielding

The discontinuities move through the sample while leaving material behind that is deformed up to the Lüders strain.

Discontinuities/perturbations of the cross sectional area (usually at the transition radii) lead to stress

Karlsruhe Institute of Technology

- Lüders bands of different nature exist. The commonly known pairs of bands or single bands running trough the entire sample are only one possibility.
- The nature of the band is closely related to the microscopic details of localization and plastic deformation. After formation of bands, the propagation can also be stopped due to various reasons. Discontinuous plastic flow might occur. These mechanisms are discussed in Chs. 5 and 6.

Example: Lüders band propagation through a shape memory alloy (note the grips in the upper part of the image for loading and unloading)

https://en.wikipedia.org/wiki/File:L%C3% BCdersband_measured_with_digital_im age_correlation_(DIC)_from_LIMESS.gif

 $\sigma_{\rm eng}$ /

Snap shots from the gif with a schematic stress-strain curve.

https://en.wikipedia.org/wiki/File:L%C3% BCdersband_measured_with_digital_im age_correlation_(DIC)_from_LIMESS.gif

Portevin-Le-Chatelier Effect

- Another type of localized deformation occurs in some alloys in the work hardening region of alloys with dissolved alloying elements.
- The Portevin-Le-Chatelier effect occurs in distinct temperature and strain rate ranges beyond a certain critical strain as a consequence of solute-dislocation interaction. The mobility of solutes contribute the temperature dependence while dislocation motion is strain rate depending.

Schematic illustration of jerky plastic flow by the Portevin-Le-Chatelier effect:

Portevin-Le-Chatelier Effect

- Another type of localized deformation occurs in some alloys in the work hardening region of alloys with dissolved alloying elements.
- The Portevin-Le-Chatelier effect occurs in distinct temperature and strain rate ranges beyond a certain critical strain as a consequence of solute-dislocation interaction. The mobility of solutes contribute the temperature dependence while dislocation motion is strain rate depending.

Example: tensile tests conducted on solid solution strengthened AI-Mg (AW-5754, 450 °C/air/1 h/quenched, 4 mm diameter) and a homogenized AI-Mg-Si-Pb (AW-6012, 530 °C/air/4 h/quenched, 4 mm dia.)

Portevin-Le-Chatelier Effect

- Another type of localized deformation occurs in some alloys in the work hardening region of alloys with dissolved alloying elements.
- The Portevin-Le-Chatelier effect occurs in distinct temperature and strain rate ranges beyond a certain critical strain as a consequence of solute-dislocation interaction. The mobility of solutes contribute the temperature dependence while dislocation motion is strain rate depending.

Example: tensile tests conducted on homogenized (530 °C/air/4 h/quenched) and subsequently peak aged (160 °C/air/20 h) AI-Mg-Si-Pb (AW-6012, 4 mm dia.)

Note that the PLC effect vanishes when the solute atoms are removed from the solid solution by the precipitation.

Summary

- Simple mechanical tests provide information about stiffness (resist. against elastic def.), strength (resist. against yielding, certain plastic strain or necking), work-hardening (increase of strength during plastic def.), ductility (ability to deform plastic), and toughness (energy consumption during plastic def.).
- Depending on the loading conditions, localization of deformation must be considered in order to describe the macroscopic deformation behavior.

