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Plasticity of Metals and Intermetallics

The quantification stresses and properties of dislocations request simple 
mathematical methods of the description of deformed solids. The 
simplest approximation is linear elasticity of continuous solids.
The mathematical framework is based on tensor algebra which is 
briefly revised on the following slides.
We will not only utilize rotations of coordinate systems in this chapter; 
we will use the approaches sometimes during the lecture.

Topics
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Plasticity of Metals and Intermetallics

Scalar product of vectors (rank one):

𝒂𝒂 � 𝒃𝒃 = 𝑎𝑎 𝑏𝑏 cos∢ 𝒂𝒂,𝒃𝒃

𝒂𝒂 � 𝒃𝒃 = 𝑎𝑎𝑖𝑖 𝒆𝒆𝒊𝒊 � 𝑏𝑏𝑘𝑘 𝒆𝒆𝒌𝒌 ⏞=
assoc.

𝑎𝑎𝑖𝑖 𝑏𝑏𝑘𝑘 𝒆𝒆𝒊𝒊 � 𝒆𝒆𝒌𝒌 ⏞=
orthon.

𝑎𝑎𝑖𝑖 𝑏𝑏𝑘𝑘 𝛿𝛿𝑖𝑖𝑘𝑘 = 𝑎𝑎𝑖𝑖 𝑏𝑏𝑖𝑖
Cross product of vectors:

𝒂𝒂 × 𝒃𝒃 = 𝑎𝑎 𝑏𝑏 sin∢ 𝒂𝒂,𝒃𝒃 𝒏𝒏

𝒄𝒄 = 𝒂𝒂 × 𝒃𝒃 = 𝑎𝑎𝑖𝑖 𝒆𝒆𝒊𝒊 × 𝑏𝑏𝑘𝑘 𝒆𝒆𝒌𝒌 ⏞=
assoc.

𝑎𝑎𝑖𝑖 𝑏𝑏𝑘𝑘 𝒆𝒆𝒊𝒊 × 𝒆𝒆𝒌𝒌 ⏞=
orthon.

𝑎𝑎𝑖𝑖 𝑏𝑏𝑘𝑘 𝜀𝜀𝑖𝑖𝑘𝑘𝑖𝑖 𝒆𝒆𝒍𝒍

𝑐𝑐𝑖𝑖 ⏞=
orthon.

𝜀𝜀𝑖𝑖𝑘𝑘𝑖𝑖 𝑎𝑎𝑘𝑘 𝑏𝑏𝑖𝑖
Triple product (determination of the box volume):

𝒂𝒂 × 𝒃𝒃 � 𝒄𝒄 = 𝑎𝑎𝑖𝑖 𝒆𝒆𝒊𝒊 × 𝑏𝑏𝑘𝑘 𝒆𝒆𝒌𝒌 � 𝑐𝑐𝑖𝑖 𝒆𝒆𝒍𝒍 ⏞=
assoc.

𝑎𝑎𝑖𝑖 𝑏𝑏𝑘𝑘 𝑐𝑐𝑖𝑖 𝒆𝒆𝒊𝒊 × 𝒆𝒆𝒌𝒌 � 𝒆𝒆𝒍𝒍 ⏞=
orthon.

𝜀𝜀𝑖𝑖𝑘𝑘𝑖𝑖 𝑎𝑎𝑖𝑖 𝑏𝑏𝑘𝑘 𝑐𝑐𝒍𝒍

Revision of Tensor Algebra, Definitions
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Plasticity of Metals and Intermetallics

Scalar product of tensors (rank two):

𝒃𝒃 = 𝒂𝒂 � 𝑻𝑻 = 𝑎𝑎𝑖𝑖 𝒆𝒆𝒊𝒊 � 𝑇𝑇𝑘𝑘𝑖𝑖 𝒆𝒆𝒌𝒌𝒆𝒆𝒍𝒍 ⏞=
assoc.

𝑎𝑎𝑖𝑖 𝑇𝑇𝑘𝑘𝑖𝑖 𝒆𝒆𝒊𝒊 � 𝒆𝒆𝒌𝒌 𝒆𝒆𝒍𝒍 ⏞=
orthon.

𝑎𝑎𝑖𝑖 𝑇𝑇𝑘𝑘𝑖𝑖 𝛿𝛿𝑖𝑖𝑘𝑘 𝒆𝒆𝒍𝒍 = 𝑎𝑎𝑖𝑖 𝑇𝑇𝑖𝑖𝑖𝑖 𝒆𝒆𝒍𝒍

𝑏𝑏𝑖𝑖 = 𝑎𝑎𝑘𝑘 𝑇𝑇𝑘𝑘𝑖𝑖 = ∑𝑘𝑘 𝑎𝑎𝑘𝑘 𝑇𝑇𝑘𝑘𝑖𝑖

𝒃𝒃 = 𝑻𝑻 � 𝒂𝒂 = 𝑇𝑇𝑖𝑖𝑘𝑘 𝒆𝒆𝒊𝒊𝒆𝒆𝒌𝒌 � 𝑎𝑎𝑖𝑖 𝒆𝒆𝒍𝒍 ⏞=
assoc.

𝑇𝑇𝑖𝑖𝑘𝑘 𝑎𝑎𝑖𝑖 𝒆𝒆𝒊𝒊 𝒆𝒆𝒌𝒌 � 𝒆𝒆𝒍𝒍 ⏞=
orthon.

𝑇𝑇𝑖𝑖𝑘𝑘 𝑎𝑎𝑖𝑖 𝛿𝛿𝑘𝑘𝑖𝑖 𝒆𝒆𝒊𝒊 = 𝑇𝑇𝑖𝑖𝑖𝑖 𝑎𝑎𝑖𝑖 𝒆𝒆𝒊𝒊

𝑏𝑏𝑖𝑖 = 𝑇𝑇𝑖𝑖𝑘𝑘 𝑎𝑎𝑘𝑘
In general, 𝑻𝑻 � 𝒂𝒂 ≠ 𝒂𝒂 � 𝑻𝑻!

Only in case of symmetric tensors (𝑻𝑻𝑻𝑻 = 𝑻𝑻, 𝑇𝑇𝑖𝑖𝑘𝑘 = 𝑇𝑇𝑘𝑘𝑖𝑖): 𝑻𝑻 � 𝒂𝒂 = 𝒂𝒂 � 𝑻𝑻.

Revision of Tensor Algebra, Definitions
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Plasticity of Metals and Intermetallics

The most important property of tensors making them ideal to describe physical/materials problems is that these 
mathematical objects are invariant against transformations of the coordinate system.

Hence, the tensors (here 𝒂𝒂 and 𝑻𝑻) remain exactly the same independent of being used in the non-primed or 
primed coordinate system:

𝒂𝒂 = 𝑎𝑎𝑖𝑖 𝒆𝒆𝑖𝑖 = 𝑎𝑎𝑖𝑖′ 𝒆𝒆𝑖𝑖′
𝑻𝑻 = 𝑇𝑇𝑖𝑖𝑘𝑘 𝒆𝒆𝑖𝑖 𝒆𝒆𝑘𝑘 = 𝑇𝑇𝑖𝑖𝑘𝑘′ 𝒆𝒆𝑖𝑖′ 𝒆𝒆𝑘𝑘′

Only the components (here 𝑎𝑎𝑖𝑖 and 𝑎𝑎𝑖𝑖′ or 𝑇𝑇𝑖𝑖𝑘𝑘 and 𝑇𝑇𝑖𝑖𝑘𝑘′ ) or their representations as matrices are different!

When applying a rotation 𝒆𝒆𝑖𝑖′ = 𝑅𝑅𝑖𝑖𝑘𝑘 𝒆𝒆𝑘𝑘 and 𝒆𝒆𝑖𝑖 = 𝑆𝑆𝑖𝑖𝑘𝑘 𝒆𝒆𝑘𝑘′ to the coordinate system, following rotation matrices can be defined 
from the following cosines:

cos∢ 𝒆𝒆𝑖𝑖′ ,𝒆𝒆𝑘𝑘 = 𝒆𝒆𝑖𝑖′ � 𝒆𝒆𝑘𝑘 = 𝑅𝑅𝑖𝑖𝑖𝑖 𝒆𝒆𝑖𝑖 � 𝒆𝒆𝑘𝑘 ⏞=
orthon.

𝑅𝑅𝑖𝑖𝑖𝑖 𝛿𝛿𝑖𝑖𝑘𝑘 = 𝑅𝑅𝑖𝑖𝑘𝑘

cos∢ 𝒆𝒆𝑖𝑖 , 𝒆𝒆𝑘𝑘′ = 𝒆𝒆𝑖𝑖 � 𝒆𝒆𝑘𝑘′ = 𝑆𝑆𝑖𝑖𝑖𝑖 𝒆𝒆𝑖𝑖′ � 𝒆𝒆𝑘𝑘′ ⏞=
orthon.

𝑆𝑆𝑖𝑖𝑖𝑖 𝛿𝛿𝑖𝑖𝑘𝑘 = 𝑆𝑆𝑖𝑖𝑘𝑘
𝑅𝑅𝑖𝑖𝑘𝑘 = 𝑆𝑆𝑘𝑘𝑖𝑖

Revision of Tensor Algebra
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Plasticity of Metals and Intermetallics

Following transformation rules can be obtained:

𝒂𝒂 = 𝑎𝑎𝑖𝑖 𝒆𝒆𝑖𝑖 = 𝑎𝑎𝑖𝑖 𝑆𝑆𝑖𝑖𝑘𝑘 𝒆𝒆𝑘𝑘′ = 𝑎𝑎𝑘𝑘′ 𝒆𝒆𝑘𝑘′
𝒂𝒂 = 𝑎𝑎𝑖𝑖′ 𝒆𝒆𝑖𝑖′ = 𝑎𝑎𝑖𝑖′ 𝑅𝑅𝑖𝑖𝑘𝑘 𝒆𝒆𝑘𝑘 = 𝑎𝑎𝑘𝑘 𝒆𝒆𝑘𝑘

𝑎𝑎𝑖𝑖′ = 𝑆𝑆𝑘𝑘𝑖𝑖 𝑎𝑎𝑘𝑘 = 𝑅𝑅𝑖𝑖𝑘𝑘 𝑎𝑎𝑘𝑘 or 𝑎𝑎𝑘𝑘 = 𝑅𝑅𝑖𝑖𝑘𝑘 𝑎𝑎𝑖𝑖′ = 𝑆𝑆𝑖𝑖𝑘𝑘 𝑎𝑎𝑖𝑖′ (𝒂𝒂′ = 𝑹𝑹 � 𝒂𝒂)

𝑻𝑻 = 𝑇𝑇𝑖𝑖𝑘𝑘 𝒆𝒆𝑖𝑖 𝒆𝒆𝑘𝑘 = 𝑇𝑇𝑖𝑖𝑘𝑘′ 𝒆𝒆𝑖𝑖′ 𝒆𝒆𝑘𝑘′ (𝑻𝑻′ = 𝑹𝑹 � 𝑻𝑻 � 𝑹𝑹𝑻𝑻)

𝑇𝑇𝑖𝑖𝑘𝑘′ = 𝑅𝑅𝑖𝑖𝑖𝑖 𝑅𝑅𝑘𝑘𝑘𝑘 𝑇𝑇𝑖𝑖𝑘𝑘

Revision of Tensor Algebra

7



Plasticity of Metals and Intermetallics

There are quantities which do not change upon transformation of the coordinate system. The so-called 
invariants are of importance regarding the physical interpretation of tensor problems. The easiest example 
for an invariant is the length of a vector. Linear combinations of invariants remain invariant!

𝑎𝑎2 = 𝑎𝑎𝑖𝑖′ 𝑎𝑎𝑖𝑖′ = 𝑅𝑅𝑖𝑖𝑘𝑘 𝑎𝑎𝑘𝑘 𝑅𝑅𝑖𝑖𝑖𝑖 𝑎𝑎𝑖𝑖 = 𝛿𝛿𝑘𝑘𝑖𝑖 𝑎𝑎𝑘𝑘 𝑎𝑎𝑖𝑖 = 𝑎𝑎𝑖𝑖 𝑎𝑎𝑖𝑖

𝐼𝐼1 = 𝑇𝑇𝑖𝑖𝑖𝑖
𝐼𝐼2 =

1
2 𝑇𝑇𝑖𝑖𝑘𝑘 𝑇𝑇𝑘𝑘𝑖𝑖

𝐼𝐼3 =
1
3 𝑇𝑇𝑖𝑖𝑘𝑘 𝑇𝑇𝑘𝑘𝑖𝑖 𝑇𝑇𝑖𝑖𝑖𝑖

Since the energy of systems cannot change when using different coordinate systems, all potentials 
must always depend only on tensor invariants!

Revision of Tensor Algebra
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Plasticity of Metals and Intermetallics

First, we introduce the displacement vector as the shortest vector connection from the initial 𝒓𝒓 to the final 
position 𝒓𝒓𝒓 of a point. Of course, this displacement vector contains both, information about the deformation 
of the solid and its rigid body motion:

𝒖𝒖 = 𝒓𝒓𝒓 − 𝒓𝒓

𝑢𝑢𝑖𝑖 = 𝑥𝑥𝑖𝑖′ − 𝑥𝑥𝑖𝑖

Displacement Vector
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Plasticity of Metals and Intermetallics

In order to separate deformation, a tensor of rank two is introduced which describes the relative changes in 
instantaneous lengths:

d𝑙𝑙2 = d𝑥𝑥𝑖𝑖
2

d𝑙𝑙𝒓2 = d𝑥𝑥𝑖𝑖′
2 = d𝑥𝑥𝑖𝑖

2 + d𝑢𝑢𝑖𝑖
2

d𝑙𝑙𝒓2 = d𝑙𝑙2 + 2 𝜀𝜀𝑖𝑖𝑘𝑘 d𝑥𝑥𝑖𝑖 d𝑥𝑥𝑘𝑘 with 𝜀𝜀𝑖𝑖𝑘𝑘 = 1
2

𝜕𝜕𝑢𝑢𝑖𝑖
𝜕𝜕𝑥𝑥𝑘𝑘

+ 𝜕𝜕𝑢𝑢𝑘𝑘
𝜕𝜕𝑥𝑥𝑖𝑖

+ 𝜕𝜕𝑢𝑢𝑙𝑙
𝜕𝜕𝑥𝑥𝑖𝑖

𝜕𝜕𝑢𝑢𝑙𝑙
𝜕𝜕𝑥𝑥𝑘𝑘

Following linear approximation by leaving out the last term is typically used:

𝜀𝜀𝑖𝑖𝑘𝑘 ≈
1
2

𝜕𝜕𝑢𝑢𝑖𝑖
𝜕𝜕𝑥𝑥𝑘𝑘

+
𝜕𝜕𝑢𝑢𝑘𝑘
𝜕𝜕𝑥𝑥𝑖𝑖

Strain Tensor
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Plasticity of Metals and Intermetallics

The (linear) strain tensor is symmetric: 𝜀𝜀𝑖𝑖𝑘𝑘 = 𝜀𝜀𝑘𝑘𝑖𝑖 (the sum of the displacement gradients is commutative).

Hence, it exists a principle system, the non-diagonal elements of which are zero. The strain state can be 
described by the three principle strains in the principle system 𝜀𝜀(1), 𝜀𝜀(2) & 𝜀𝜀(3) with:

d𝑥𝑥1′ = (1 + 𝜀𝜀(1)) d𝑥𝑥1, etc.

The trace describes the volume change by the deformation:

d𝑉𝑉′ = d𝑥𝑥1′ d𝑥𝑥2′ d𝑥𝑥3′
= d𝑉𝑉 1 + 𝜀𝜀 1 + 𝜀𝜀 2 + 𝜀𝜀 3 = d𝑉𝑉 1 + 𝜀𝜀𝑖𝑖𝑖𝑖

Strain Tensor
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Plasticity of Metals and Intermetallics

The principle strains can be obtained by solving the following eigenvalue problem (the projection of the 
strain tensor on the principle system scales with the strength of the principle strains):

𝜺𝜺 � 𝒙𝒙 = 𝜀𝜀 𝑖𝑖 𝒙𝒙

Hence, for any non-trivial system 𝒙𝒙 ≠ 𝟎𝟎, the characteristic polynomial can be solved:

det 𝜺𝜺 − 𝜀𝜀 𝑖𝑖 � 𝟏𝟏 = 0

The principle strains are of course invariants of the tensor because they don’t change under transformation 
of the coordinate system.

Strain Tensor
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Plasticity of Metals and Intermetallics

In analogy to the derivation of the strain tensor, the rotations can also be described in the form of a tensor 
of rank two:

𝜔𝜔𝑖𝑖𝑘𝑘 ≈
1
2

𝜕𝜕𝑢𝑢𝑖𝑖
𝜕𝜕𝑥𝑥𝑘𝑘

−
𝜕𝜕𝑢𝑢𝑘𝑘
𝜕𝜕𝑥𝑥𝑖𝑖

antisymmetric 𝜔𝜔𝑖𝑖𝑘𝑘 = −𝜔𝜔𝑘𝑘𝑖𝑖

Rotation Tensor
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Plasticity of Metals and Intermetallics

The force acting on any volume is:

�𝐹𝐹𝑖𝑖 d𝑉𝑉

Stress Tensor
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Plasticity of Metals and Intermetallics

Hence, there is a tensor of rank two, 𝜎𝜎𝑖𝑖𝑘𝑘, the gradient of which corresponds to the forces 𝐹𝐹𝑖𝑖 = 𝜕𝜕𝜎𝜎𝑖𝑖𝑘𝑘
𝜕𝜕𝑥𝑥𝑘𝑘

.

The volume integral then can be converted by using Gauss’ theorem into a surface integral over the tensor 
itself:

�𝐹𝐹𝑖𝑖 d𝑉𝑉 = �
𝜕𝜕𝜎𝜎𝑖𝑖𝑘𝑘
𝜕𝜕𝑥𝑥𝑘𝑘

d𝑉𝑉 ⏞=
Gauss

�𝜎𝜎𝑖𝑖𝑘𝑘 d𝑛𝑛𝑘𝑘

It’s of fundamental importance, that this can be done. The continuum theory requests that the microscopic 
interaction is of short range (atomic scale). Hence, different/any volumes must exclusively interact via their 
surfaces. This is obviously possible if the forces can be (fully) expressed in terms of the above introduced 
tensor.

Stress Tensor

Plasticity15



Plasticity of Metals and Intermetallics

The torque acting on the volume is:

�𝐹𝐹𝑖𝑖 𝑥𝑥𝑘𝑘 − 𝐹𝐹𝑘𝑘 𝑥𝑥𝑖𝑖 d𝑉𝑉

A similar conversion leads to:

�
𝜕𝜕𝜎𝜎𝑖𝑖𝑖𝑖
𝜕𝜕𝑥𝑥𝑖𝑖

𝑥𝑥𝑘𝑘 −
𝜕𝜕𝜎𝜎𝑘𝑘𝑖𝑖
𝜕𝜕𝑥𝑥𝑖𝑖

𝑥𝑥𝑖𝑖 d𝑉𝑉

⏞=
part. int.

�
𝜕𝜕 𝜎𝜎𝑖𝑖𝑖𝑖 𝑥𝑥𝑘𝑘 − 𝜎𝜎𝑘𝑘𝑖𝑖𝑥𝑥𝑖𝑖

𝜕𝜕𝑥𝑥𝑖𝑖
d𝑉𝑉 − � 𝜎𝜎𝑖𝑖𝑖𝑖

𝜕𝜕𝑥𝑥𝑘𝑘
𝜕𝜕𝑥𝑥𝑖𝑖

− 𝜎𝜎𝑘𝑘𝑖𝑖
𝜕𝜕𝑥𝑥𝑖𝑖
𝜕𝜕𝑥𝑥𝑖𝑖

d𝑉𝑉

⏞=
Gauss

�𝜎𝜎𝑖𝑖𝑖𝑖 𝑥𝑥𝑘𝑘 − 𝜎𝜎𝑘𝑘𝑖𝑖𝑥𝑥𝑖𝑖 d𝑛𝑛𝑖𝑖 + � 𝜎𝜎𝑘𝑘𝑖𝑖 − 𝜎𝜎𝑖𝑖𝑘𝑘 d𝑉𝑉

Stress Tensor
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Plasticity of Metals and Intermetallics

Since torques also have to be transmitted via the surface only, the volume integral term must vanish:

∫ 𝜎𝜎𝑘𝑘𝑖𝑖 − 𝜎𝜎𝑖𝑖𝑘𝑘 d𝑉𝑉 = 0 by 𝜎𝜎𝑖𝑖𝑘𝑘 = 𝜎𝜎𝑘𝑘𝑖𝑖

The stress tensor is symmetric. Important: this is often misinterpreted in the way that torque balance is 
automatically fulfilled. It only means that the torques in any volume element are transmitted via the surfaces 
of the volumes, no more, no less.

Stress Tensor

17



Plasticity of Metals and Intermetallics

Hence, there is a principle system with the principle stresses 𝜎𝜎 1 , 𝜎𝜎 2 and 𝜎𝜎 3 .

The characteristic polynomial is:

det 𝝈𝝈 − 𝜎𝜎 𝑖𝑖 � 𝟏𝟏 = 0

The principle stresses are invariants of the stress tensor.

Stress Tensor

18



Plasticity of Metals and Intermetallics

The stress vector 𝒕𝒕 can be calculated by the projection of the stress tensor onto a normal vector of the 
respective plane 𝒏𝒏:

𝑡𝑡𝑖𝑖 = 𝑛𝑛𝑘𝑘 𝜎𝜎𝑖𝑖𝑘𝑘

Stress Vector

19



Plasticity of Metals and Intermetallics

Reference Frame

𝑥𝑥
𝑦𝑦

𝑧𝑧

𝑛𝑛𝑥𝑥

𝑛𝑛𝑧𝑧

𝑛𝑛𝑦𝑦

𝜎𝜎𝑥𝑥

𝑥𝑥

𝑦𝑦

𝑧𝑧

𝑛𝑛𝑦𝑦

−𝑛𝑛𝑦𝑦

𝑛𝑛𝑥𝑥 −𝑛𝑛𝑥𝑥

𝜎𝜎𝑥𝑥
𝜎𝜎𝑧𝑧

𝜎𝜎𝑦𝑦
𝜏𝜏𝑦𝑦𝑥𝑥

𝜏𝜏𝑥𝑥𝑦𝑦

The normal vectors of the 
surfaces point out of the solid. 
The direction of the acting 
force automatically follows 
from the equation on the slide 
before.

20



Plasticity of Metals and Intermetallics

Rotation of the system:

Examples: Rotation

𝒙𝒙

𝒚𝒚
𝒛𝒛

𝑥𝑥𝑖𝑖 =
1
0
0

, 𝑦𝑦𝑖𝑖 =
0
1
0

, 𝑧𝑧𝑖𝑖 =
0
0
1

𝑥𝑥𝑖𝑖′ = 𝑅𝑅𝑖𝑖𝑘𝑘 𝑥𝑥𝑘𝑘 =

2
2
2
2
0

, 𝑦𝑦𝑖𝑖′ =
− 2

2
2
2
0

, 𝑧𝑧𝑖𝑖′ =
0
0
1

𝒙𝒙′

𝒚𝒚′

𝒛𝒛′

Description of the base vectors 𝒙𝒙′, 𝒚𝒚′ and 𝒛𝒛′ in the reference frame 𝒙𝒙, 𝒚𝒚 and 𝒛𝒛

rotation of 45° about 𝑧𝑧: 𝑅𝑅𝑖𝑖𝑘𝑘 =

2
2

2
2

0

− 2
2

2
2

0
0 0 1

obtained by

cos∢ 𝒙𝒙𝒓,𝒙𝒙 = cos∢ 𝒚𝒚𝒓,𝒚𝒚

= cos∢ 𝒙𝒙𝒓,𝒚𝒚 = cos 45° =
2

2

cos∢ 𝒛𝒛𝒓, 𝒛𝒛 = cos 0° = 1

cos∢ 𝒚𝒚𝒓,𝒙𝒙 = cos 135° = −
2

2

45°

21



Plasticity of Metals and Intermetallics

Rotation of the system:

Examples: Rotation

𝒂𝒂

𝒂𝒂

𝑎𝑎𝑖𝑖 =
1
1
0

𝑎𝑎𝑖𝑖′ = 𝑅𝑅𝑖𝑖𝑘𝑘 𝑎𝑎𝑘𝑘 =
2

0
0

Description of the vector 𝒂𝒂 in the frame 𝒙𝒙′, 𝒚𝒚′ and 𝒛𝒛′.

𝒙𝒙

𝒚𝒚
𝒛𝒛

𝒙𝒙′

𝒚𝒚′

𝒛𝒛′

𝒂𝒂 remains the same irrespective
of the coordinate system

rotation of 45° about 𝑧𝑧: 𝑅𝑅𝑖𝑖𝑘𝑘 =

2
2

2
2

0

− 2
2

2
2

0
0 0 1

45°

22
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Uniaxial loading with 𝜎𝜎n:

Examples: Uniaxial Loading

𝜎𝜎n

𝜎𝜎𝑖𝑖𝑘𝑘 =
𝜎𝜎n 0 0
0 0 0
0 0 0

𝜎𝜎𝑖𝑖𝑘𝑘′ =

𝜎𝜎n
2 −

𝜎𝜎n
2 0

−
𝜎𝜎n
2

𝜎𝜎n
2 0

0 0 0

𝒙𝒙

𝒚𝒚
𝒛𝒛

𝒙𝒙′

𝒚𝒚′

𝒛𝒛′

𝜎𝜎n
2

𝝈𝝈 remains the same irrespective
of the coordinate system

rotation of 45° about 𝑧𝑧: 𝑅𝑅𝑖𝑖𝑘𝑘 =

2
2

2
2

0

− 2
2

2
2

0
0 0 1

45°

23



Plasticity of Metals and Intermetallics

Uniaxial loading with 𝜎𝜎n:

Examples: Shear Loading

𝜎𝜎𝑖𝑖𝑘𝑘 =
0 𝜏𝜏n 0
𝜏𝜏n 0 0
0 0 0

𝜏𝜏n𝒙𝒙

𝒚𝒚
𝒛𝒛

𝒙𝒙′

𝒚𝒚′

𝜏𝜏n

𝜎𝜎𝑖𝑖𝑘𝑘 ′ =
𝜏𝜏n 0 0
0 −𝜏𝜏n 0
0 0 0

𝝈𝝈 remains the same irrespective
of the coordinate system

rotation of 45° about 𝑧𝑧: 𝑅𝑅𝑖𝑖𝑘𝑘 =

2
2

2
2

0

− 2
2

2
2

0
0 0 1

45°
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Uniaxial loading with 𝜎𝜎n:

Examples: Uniaxial Stress

𝜎𝜎n

rotation of κ about 𝑧𝑧

2κ = 0°

𝜏𝜏

𝜎𝜎

𝜏𝜏max
= 0.5 𝜎𝜎n

visualization with Mohr’s circle

𝜎𝜎max = 𝜎𝜎n

2κ = 0°

𝑥𝑥

𝑦𝑦
𝑧𝑧

𝜎𝜎𝑥𝑥 = 𝜎𝜎n
𝜏𝜏𝑥𝑥𝑦𝑦 = 0

𝜎𝜎𝑥𝑥, 𝜏𝜏𝑥𝑥𝑦𝑦

𝜎𝜎𝑦𝑦,−𝜏𝜏𝑥𝑥𝑦𝑦

𝜎𝜎𝑖𝑖𝑘𝑘 =
𝜎𝜎n 0 0
0 0 0
0 0 0

𝑥𝑥 and 𝑦𝑦 of the
rotated system
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Uniaxial loading with 𝜎𝜎n:

Examples: Uniaxial Stress

𝜎𝜎n

2κ = 90°

𝜏𝜏

𝜎𝜎

𝜏𝜏max
= 0.5 𝜎𝜎n

visualization with Mohr’s circle

𝜎𝜎max = 𝜎𝜎n

2κ = 90°κ
𝑥𝑥

𝑦𝑦

𝑧𝑧
𝜎𝜎𝑥𝑥 =

𝜎𝜎n
2

𝜏𝜏𝑥𝑥𝑦𝑦 = −
𝜎𝜎n
2

𝜎𝜎𝑥𝑥, 𝜏𝜏𝑥𝑥𝑦𝑦

𝜎𝜎𝑦𝑦,−𝜏𝜏𝑥𝑥𝑦𝑦

rotation of κ about 𝑧𝑧

𝑥𝑥 and 𝑦𝑦 of the
rotated system

𝜎𝜎𝑖𝑖𝑘𝑘 =

𝜎𝜎n
2 −

𝜎𝜎n
2 0

−
𝜎𝜎n
2

𝜎𝜎n
2 0

0 0 0

26



Plasticity of Metals and Intermetallics

Uniaxial loading with 𝜎𝜎n:

Examples: Uniaxial Stress

𝜎𝜎n

2κ = 180°

𝜏𝜏

𝜎𝜎

𝜏𝜏max
= 0.5 𝜎𝜎n

visualization with Mohr’s circle

𝜎𝜎max = 𝜎𝜎n

2κ = 180°κ
𝑥𝑥

𝑦𝑦

𝑧𝑧
𝜎𝜎𝑥𝑥, 𝜏𝜏𝑥𝑥𝑦𝑦 𝜎𝜎𝑦𝑦,−𝜏𝜏𝑥𝑥𝑦𝑦 𝜎𝜎𝑥𝑥 = 0

𝜏𝜏𝑥𝑥𝑦𝑦 = 0

𝜎𝜎𝑖𝑖𝑘𝑘 =
0 0 0
0 𝜎𝜎n 0
0 0 0

rotation of κ about 𝑧𝑧

𝑥𝑥 and 𝑦𝑦 of the
rotated system
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Uniaxial loading with 𝜎𝜎n:

Examples: Uniaxial Stress

𝜎𝜎n

rotation of 2κ about 𝑧𝑧

2κ = 270°

𝜏𝜏

𝜎𝜎

𝜏𝜏max
= 0.5 𝜎𝜎n

visualization with Mohr’s circle

𝜎𝜎max = 𝜎𝜎n

2κ = 270°

κ

𝑥𝑥 𝑦𝑦

𝑧𝑧

𝜎𝜎𝑥𝑥 =
𝜎𝜎n
2

𝜏𝜏𝑥𝑥𝑦𝑦 =
𝜎𝜎n
2

𝜎𝜎𝑥𝑥, 𝜏𝜏𝑥𝑥𝑦𝑦

𝜎𝜎𝑦𝑦,−𝜏𝜏𝑥𝑥𝑦𝑦
𝜎𝜎𝑖𝑖𝑘𝑘 =

𝜎𝜎n
2

𝜎𝜎n
2 0

𝜎𝜎n
2

𝜎𝜎n
2 0

0 0 0

𝑥𝑥 and 𝑦𝑦 of the
rotated system
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Uniaxial loading with 𝜎𝜎n:

Examples: Uniaxial Stress

𝜎𝜎n

2κ = 360°

𝜏𝜏

𝜎𝜎

𝜏𝜏max
= 0.5 𝜎𝜎n

visualization with Mohr’s circle

𝜎𝜎max = 𝜎𝜎n

2κ = 360°

κ
𝜎𝜎𝑥𝑥 = 𝜎𝜎n
𝜏𝜏𝑥𝑥𝑦𝑦 = 0

𝜎𝜎𝑥𝑥, 𝜏𝜏𝑥𝑥𝑦𝑦

𝜎𝜎𝑦𝑦,−𝜏𝜏𝑥𝑥𝑦𝑦

𝑥𝑥

𝑦𝑦
𝑧𝑧

𝜎𝜎𝑖𝑖𝑘𝑘 =
𝜎𝜎n 0 0
0 0 0
0 0 0

rotation of κ about 𝑧𝑧

𝑥𝑥 and 𝑦𝑦 of the
rotated system
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Pure shear with 𝜏𝜏n:

Examples: Shear Loading

𝜏𝜏n

2κ = 0°

𝜏𝜏

𝜎𝜎

𝜏𝜏max
= 𝜏𝜏n

visualization with Mohr’s circle

𝜎𝜎max = 𝜏𝜏n

2κ = 0°

𝑥𝑥

𝑦𝑦
𝑧𝑧

𝜎𝜎𝑥𝑥 = 0
𝜏𝜏𝑥𝑥𝑦𝑦 = 𝜏𝜏n

𝜎𝜎𝑥𝑥, 𝜏𝜏𝑥𝑥𝑦𝑦

𝜎𝜎𝑦𝑦,−𝜏𝜏𝑥𝑥𝑦𝑦
𝜎𝜎𝑖𝑖𝑘𝑘 =

0 𝜏𝜏n 0
𝜏𝜏n 0 0
0 0 0

rotation of κ about 𝑧𝑧

𝑥𝑥 and 𝑦𝑦 of the
rotated system
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Pure shear with 𝜏𝜏n:

Examples: Shear Loading

𝜎𝜎

𝜏𝜏max
= 𝜏𝜏n

visualization with Mohr’s circle

𝜎𝜎max = 𝜏𝜏n

𝜎𝜎𝑥𝑥, 𝜏𝜏𝑥𝑥𝑦𝑦

𝜎𝜎𝑦𝑦,−𝜏𝜏𝑥𝑥𝑦𝑦

2κ = 90°κ
𝑥𝑥

𝑦𝑦

𝑧𝑧
𝜎𝜎𝑥𝑥 = 𝜏𝜏n
𝜏𝜏𝑥𝑥𝑦𝑦 = 0

2κ = 90°

𝜏𝜏

𝜎𝜎𝑖𝑖𝑘𝑘 =
𝜏𝜏n 0 0
0 −𝜏𝜏n 0
0 0 0

𝜏𝜏n

rotation of κ about 𝑧𝑧

𝑥𝑥 and 𝑦𝑦 of the
rotated system
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Pure shear with 𝜏𝜏n:

Examples: Shear Loading

𝜎𝜎

𝜏𝜏max
= 𝜏𝜏n

visualization with Mohr’s circle

𝜎𝜎max = 𝜏𝜏n

𝜎𝜎𝑥𝑥, 𝜏𝜏𝑥𝑥𝑦𝑦

𝜎𝜎𝑦𝑦,−𝜏𝜏𝑥𝑥𝑦𝑦

2κ = 180°

2κ = 180°
κ

𝑥𝑥

𝑦𝑦

𝑧𝑧
𝜎𝜎𝑥𝑥 = 0

𝜏𝜏𝑥𝑥𝑦𝑦 = −𝜏𝜏n

𝜏𝜏

𝜎𝜎𝑖𝑖𝑘𝑘 =
0 −𝜏𝜏n 0
−𝜏𝜏n 0 0

0 0 0

𝜏𝜏n

rotation of κ about 𝑧𝑧

𝑥𝑥 and 𝑦𝑦 of the
rotated system
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Pure shear with 𝜏𝜏n:

Examples: Shear Loading

𝜎𝜎

𝜏𝜏max
= 𝜏𝜏n

visualization with Mohr’s circle

𝜎𝜎max = 𝜏𝜏n

𝜎𝜎𝑥𝑥, 𝜏𝜏𝑥𝑥𝑦𝑦

𝜎𝜎𝑦𝑦,−𝜏𝜏𝑥𝑥𝑦𝑦

2κ = 270°

𝜏𝜏

2κ = 270°

κ

𝑥𝑥 𝑦𝑦

𝑧𝑧

𝜎𝜎𝑥𝑥 = −𝜏𝜏n
𝜏𝜏𝑥𝑥𝑦𝑦 = 0

𝜎𝜎𝑖𝑖𝑘𝑘 =
−𝜏𝜏n 0 0

0 𝜏𝜏n 0
0 0 0

𝜏𝜏n

rotation of κ about 𝑧𝑧

𝑥𝑥 and 𝑦𝑦 of the
rotated system
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Pure shear with 𝜏𝜏n:

Examples: Shear Loading

𝜎𝜎

𝜏𝜏max
= 𝜏𝜏n

visualization with Mohr’s circle

𝜎𝜎max = 𝜏𝜏n

2κ = 360°

𝜏𝜏

2κ = 360°

κ
𝜎𝜎𝑥𝑥 = 0
𝜏𝜏𝑥𝑥𝑦𝑦 = 𝜏𝜏n

𝑥𝑥

𝑦𝑦
𝑧𝑧

𝜎𝜎𝑥𝑥, 𝜏𝜏𝑥𝑥𝑦𝑦

𝜎𝜎𝑦𝑦,−𝜏𝜏𝑥𝑥𝑦𝑦
𝜎𝜎𝑖𝑖𝑘𝑘 =

0 𝜏𝜏n 0
𝜏𝜏n 0 0
0 0 0

𝜏𝜏n

rotation of κ about 𝑧𝑧

𝑥𝑥 and 𝑦𝑦 of the
rotated system
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Equilibrium

In equilibrium, the internal forces compensate in each volume:

𝐹𝐹𝑖𝑖 = 0

The equilibrium is therefore determined by solving:

𝜕𝜕𝜎𝜎𝑖𝑖𝑘𝑘
𝜕𝜕𝑥𝑥𝑘𝑘

= 0

35



Plasticity of Metals and Intermetallics

Hooke’s Law

Solving 𝜕𝜕𝜎𝜎𝑖𝑖𝑘𝑘
𝜕𝜕𝑥𝑥𝑘𝑘

= 0 is not useful since boundary conditions might not be available in a proper way. Therefore, a 
conversion to strains and, finally, to displacements is useful.
The conversion needs the introduction of suitable materials laws. The simplest form is as follows:

𝜎𝜎𝑖𝑖𝑘𝑘 = 𝐶𝐶𝑖𝑖𝑘𝑘𝑖𝑖𝑘𝑘 𝜀𝜀𝑖𝑖𝑘𝑘
𝜀𝜀𝑖𝑖𝑘𝑘 = 𝑆𝑆𝑖𝑖𝑘𝑘𝑖𝑖𝑘𝑘 𝜎𝜎𝑖𝑖𝑘𝑘

Hence, 𝜕𝜕
𝜕𝜕𝑥𝑥𝑘𝑘

(𝐶𝐶𝑖𝑖𝑘𝑘𝑖𝑖𝑘𝑘 𝜀𝜀𝑖𝑖𝑘𝑘) = 0 and 𝜕𝜕
𝜕𝜕𝑥𝑥𝑘𝑘

(𝐶𝐶𝑖𝑖𝑘𝑘𝑖𝑖𝑘𝑘
𝜕𝜕𝑢𝑢𝑙𝑙
𝜕𝜕𝑥𝑥𝑚𝑚

+ 𝜕𝜕𝑢𝑢𝑚𝑚
𝜕𝜕𝑥𝑥𝑙𝑙

) = 0 follow.
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Compliance and Stiffness

The materials property has 3 � 3 � 3 � 3 = 81 coefficients 6 � 6 = 36 of which are independent coefficients 
considering the symmetries of the stress and strain tensors:

𝐶𝐶𝑖𝑖𝑘𝑘𝑖𝑖𝑘𝑘 = 𝐶𝐶𝑘𝑘𝑖𝑖𝑖𝑖𝑘𝑘
𝐶𝐶𝑖𝑖𝑘𝑘𝑖𝑖𝑘𝑘 = 𝐶𝐶𝑖𝑖𝑘𝑘𝑘𝑘𝑖𝑖

The principle symmetry is more difficult to prove by application of Schwarz’s theorem. Anyway, the number 
of independent coefficients further reduces to 21:

𝐶𝐶𝑖𝑖𝑘𝑘𝑖𝑖𝑘𝑘 = 𝐶𝐶𝑖𝑖𝑘𝑘𝑖𝑖𝑘𝑘
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Additional Information: Voigt Notation

The symmetry properties allow for a more efficient way of writing down the numbers by converting pairs of 
indices as follows:

11 → 1
22 → 2
33 → 3
23 → 4
13 → 5
12 → 6

Very important: The Voigt-converted matrices and vectors aren’t tensors! The transformation laws 
presented in the first slides cannot be applied to these things.
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Compliance and Stiffness

material prototype Struktur-
bericht 𝐶𝐶11 / GPa 𝐶𝐶12 / GPa 𝐶𝐶44 / GPa 𝐴𝐴

Cu

Cu A1

𝟏𝟏𝟏𝟏𝟏𝟏 𝟏𝟏𝟏𝟏𝟎𝟎 𝟕𝟕𝟏𝟏 𝟑𝟑.𝟑𝟑

Al 106 60 28 1.2

Au 193 164 42 2.9

Ni 251 150 124 2.5

α-Fe
W A2

230 135 117 2.5

W 𝟓𝟓𝟎𝟎𝟏𝟏 𝟏𝟏𝟏𝟏𝟏𝟏 𝟏𝟏𝟓𝟓𝟏𝟏 𝟏𝟏.𝟎𝟎

Si diamond A4 166 64 80 1.6

NaCl NaCl B1 𝟒𝟒𝟏𝟏 𝟏𝟏𝟑𝟑 𝟏𝟏𝟑𝟑 𝟎𝟎.𝟕𝟕

C. Teodosiu: “Elastic Models of Crystal Defects”, Berlin, Heidelberg: Springer (1982)
R. E. Newnham: “Properties of materials“, Oxford, UK: Oxford University Press (2005)
G. E. Dieter: “Mechanical Metallurgy“, London, etc.: McGraw-Hill (1988)
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Compliance and Stiffness

Visualization of the anisotropic Young’s moduli of single crystals deformed uniaxial along certain axes:

NaCl
𝐴𝐴 = 0.7

Cu
𝐴𝐴 = 3.3

100
010

110

111

001

W
𝐴𝐴 = 1.0

65 GPa 192 GPa 387.7 GPa 43.5 GPa33.2 GPa388.8 GPa
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Plasticity of Metals and Intermetallics

Compliance and Stiffness

material prototype Struktur-
bericht 𝐶𝐶11 / GPa 𝐶𝐶12 / GPa 𝐶𝐶13 / GPa 𝐶𝐶33 / GPa 𝐶𝐶44 / GPa

Mg
Mg A3

59 26 21 62 16

Zn 164 36 53 63 39

α-Ti 41 35 29 53 7

C. Teodosiu: “Elastic Models of Crystal Defects”, Berlin, Heidelberg: Springer (1982)
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The potential energy of an elastically loaded material can only depend on invariants of the strain tensor:

𝑈𝑈 = 𝐶𝐶1𝜀𝜀𝑖𝑖𝑖𝑖2 + 𝐶𝐶2
1
2
𝜀𝜀𝑖𝑖𝑘𝑘 𝜀𝜀𝑘𝑘𝑖𝑖 with 𝜎𝜎𝑖𝑖𝑘𝑘 = 𝜕𝜕𝜕𝜕

𝜕𝜕𝜀𝜀𝑖𝑖𝑘𝑘
(A form which results in a linear elastic materials law.)

Hence, the corresponding isotropic material has only two independent elastic coefficients:
𝜎𝜎𝑖𝑖𝑘𝑘 = 2𝐶𝐶1𝜀𝜀𝑖𝑖𝑖𝑖 𝛿𝛿𝑖𝑖𝑘𝑘 + 𝐶𝐶2 𝜀𝜀𝑖𝑖𝑘𝑘

Isotropic, Linear-Elastic Material
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Isotropic, Linear-Elastic Material

The equation can be expressed in terms of simple, elastic properties, for example 𝐺𝐺 and ν:

𝜎𝜎𝑖𝑖𝑘𝑘 = 2𝐺𝐺 𝜀𝜀𝑖𝑖𝑘𝑘 +
2𝐺𝐺 ν

1 − 2ν 𝛿𝛿𝑖𝑖𝑘𝑘𝜀𝜀𝑖𝑖𝑖𝑖

𝐶𝐶𝑖𝑖𝑘𝑘𝑖𝑖𝑘𝑘 =
2𝐺𝐺(1 − ν)
3(1 − 2ν) 𝛿𝛿𝑖𝑖𝑘𝑘 𝛿𝛿𝑖𝑖𝑘𝑘 + 𝐺𝐺 𝛿𝛿𝑖𝑖𝑖𝑖 𝛿𝛿𝑘𝑘𝑘𝑘 + 𝛿𝛿𝑖𝑖𝑘𝑘 𝛿𝛿𝑘𝑘𝑖𝑖 −

2
3 𝛿𝛿𝑖𝑖𝑘𝑘 𝛿𝛿𝑖𝑖𝑘𝑘

There are also other common pairs of properties, like 𝐺𝐺 and 𝐾𝐾 in solid state physics or 𝐸𝐸 and ν in 
mechanical engineering. 𝐺𝐺 and ν are often used for the description of dislocations.
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Plasticity of Metals and Intermetallics

Isotropic behavior in polycrystals is obtained for a random distribution of crystal orientations.
There are many different ways of averaging over the orientation distribution function 𝑓𝑓(𝒈𝒈) (random for 
𝑓𝑓 𝒈𝒈 = 1).
Simple cases are parallel or serial with homogeneous strain (Voigt) or stress (Reuss), respectively, within 
the grains.

Isotropic, Linear-Elastic Material

44



Plasticity of Metals and Intermetallics

Isotropic, Linear-Elastic Material
material prototype Struktur-

bericht
𝜌𝜌 / 

kg/m3 𝑐𝑐T / m/s 𝑐𝑐L / m/s 𝐺𝐺 / GPa 𝑀𝑀 / GPa 𝜈𝜈 / 1 𝐸𝐸 / GPa

Cu

Cu A1

8933 2325 4759 48 202 0.34 130

Al 2698 3111 6374 26 110 0.34 70

Au 19281 1200 3240 28 202 0.42 79

Ni 8907 2929 5608 76 280 0.31 201

α-Fe
W A2

7873 3224 5957 82 279 0.29 212

W 19254 2887 5221 160 525 0.28 411

Mg
Mg A3

1738 3163 5823 17 59 0.29 45

Zn 7135 2421 4187 42 125 0.25 104

α-Ti 4508 3128 6130 44 169 0.32 117

Si diamond A4 2329 − 8433 80 166 0.22 145

NaCl NaCl B1 2589 2772 5584 20 81 0.34 53
𝑀𝑀 = 2𝐺𝐺 1−ν

1−2ν
denotes an elastic modulus associated to the propagation of pressure waves (longitudinal).
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G. W. C. Kaye & T. H. Laby: “Tables of Physical and Chemical Constants”, Essex, England; New York: Longman (1995)
M. Matsui: “Simultaneous sound velocity and density measurements of NaCl at high temperatures and 
pressures: Application as a primary pressure standard”, American Mineralogist 97 (2012) 1670-1675



Plasticity of Metals and Intermetallics

Summary

The simplest description of the deformation of solids is linear elasticity 
with interaction forces of short range. Differential equations of the 
form 𝜕𝜕𝜎𝜎𝑖𝑖𝑘𝑘

𝜕𝜕𝑥𝑥𝑘𝑘
= 0 have to be solved. Assuming an anisotropic materials law 

and using the linearized strain tensor, differential equations of the 
displacement vector can be used.
Crystalline materials are anisotropic. In case of elastic isotropy in 
polycrystals, two independent quantities are necessary to describe 
the linear elastic behavior.
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