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Parallel Dislocations

Plasticity

In order to evaluate the interaction force between parallel dislocations, 

we can assume that the stress field of one dislocation acts as 

external stress on the other. Hence, Peach-Köhler force in 

conjunction with the stress fields are utilized.

Important cases:

Parallel/anti-parallel edge dislocations

Parallel/anti-parallel screw dislocations
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Parallel Dislocations

Plasticity

Parallel/anti-parallel edge dislocations with the dislocation line along 𝑧
(positive sense) and Burgers vectors along ± 𝑥:

𝒃1 =
𝑏
0
0

, 𝒃2 =
±𝑏
0
0

𝒔1 = 𝒔2 =
0
0
1

𝝈1 = ±𝝈2 =

𝜎𝑥𝑥 𝜏𝑥𝑦 0

𝜏𝑥𝑦 𝜎𝑦𝑦 0

0 0 𝜎𝑧𝑧

𝑭

𝐿
= 𝒃𝟐 ∙ 𝝈𝟏 × 𝒔𝟐 =

± 𝑏 𝜏𝑥𝑦
∓ 𝑏 𝜎𝑥𝑥

0

+ parallel

− anti-parallel

The force on dislocation (2) is a 

result of the stress field of 

dislocation (1).

𝑥

𝑦

𝑧 (sessile)

(passing)
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Parallel Dislocations

Plasticity

Parallel/anti-parallel edge dislocations with the dislocation line along 𝑧
(positive sense) and Burgers vectors along ± 𝑥:

𝑭

𝐿
= 𝒃𝟐 ∙ 𝝈𝟏 × 𝒔𝟐 =

± 𝑏 𝜏𝑥𝑦
∓ 𝑏 𝜎𝑥𝑥

0

𝑭

𝐿
=

𝐺 ∙ 𝑏2

2𝜋 ∙ 1 − ν

±
𝑥 ∙ 𝑥2 − 𝑦2

𝑥2 + 𝑦2 2

±
𝑦 ∙ 3𝑥2 + 𝑦2

𝑥2 + 𝑦2 2

0

𝑥

𝑦

𝑧 (sessile)

(passing)
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Parallel Dislocations

Plasticity

Parallel/anti-parallel edge dislocations with the dislocation line along 𝑧
(positive sense) and Burgers vectors along ± 𝑥:

𝑥

𝑦

𝑦 = 𝑥𝑦 = −𝑥

parallel anti-parallel

↑
climb

↓

← glide →
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Parallel Dislocations

Plasticity

Parallel/anti-parallel edge dislocations with the dislocation line along 𝑧
(positive sense) and Burgers vectors along ± 𝑥:

𝑥

𝑦

parallel

𝐹𝑦 ∝ ± 𝑦 ∙ 3𝑥2 + 𝑦2

𝐹𝑦 > 0

𝐹𝑦 < 0 𝐹𝑦 > 0

𝐹𝑦 < 0

anti-parallel
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Parallel Dislocations

Plasticity

Parallel/anti-parallel edge dislocations with the dislocation line along 𝑧
(positive sense) and Burgers vectors along ± 𝑥:

𝑥

𝑦

parallel

𝐹𝑥 < 0𝐹𝑥 > 0

𝐹𝑥 ∝ ± 𝑥 ∙ 𝑥2 − 𝑦2

anti-parallel
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Parallel/anti-parallel screw dislocations with the dislocation line along 𝑧
(positive sense) and Burgers vectors along ± 𝑧:

𝒃1 =
0
0
𝑏

, 𝒃2 =
0
0
±𝑏

𝒔1 = 𝒔2 =
0
0
1

𝝈1 = ±𝝈2 =

0 0 𝜏𝑥𝑧
0 0 𝜏𝑦𝑧
𝜏𝑥𝑧 𝜏𝑦𝑧 0

𝑭

𝐿
= 𝒃𝟐 ∙ 𝝈𝟏 × 𝒔𝟐 =

± 𝑏 𝜏𝑦𝑧
∓ 𝑏 𝜏𝑥𝑧

0

Parallel Dislocations

Plasticity

+ parallel

− anti-parallel

The force on dislocation (2) is a 

result of the stress field of 

dislocation (1).

𝑥

𝑦

𝑧 (sessile)

(passing)
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Parallel Dislocations

Plasticity

Parallel/anti-parallel screw dislocations with the dislocation line along 𝑧
(positive sense) and Burgers vectors along ± 𝑧:

𝑭

𝐿
= 𝒃𝟐 ∙ 𝝈𝟏 × 𝒔𝟐 =

± 𝑏 𝜏𝑦𝑧
∓ 𝑏 𝜏𝑥𝑧

0

𝑭

𝐿
=
𝐺 ∙ 𝑏2

2𝜋

±
𝑥

𝑥2 + 𝑦2

±
𝑦

𝑥2 + 𝑦2

0

𝑥

𝑦

𝑧 (sessile)

(passing)
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Parallel Dislocations

Plasticity

Parallel/anti-parallel screw dislocations with the dislocation line along 𝑧
(positive sense) and Burgers vectors along ± 𝑧:

𝑥

𝑦

parallel anti-parallel

↑
cross-slip

↓

← glide →
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Parallel Dislocations

Plasticity

Parallel/anti-parallel screw dislocations with the dislocation line along 𝑧
(positive sense) and Burgers vectors along ± 𝑧:

𝑥

𝑦

𝐹𝑦 ∝ ± 𝑦

𝐹𝑦 > 0

𝐹𝑦 < 0 𝐹𝑦 > 0

𝐹𝑦 < 0

parallel anti-parallel
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Parallel Dislocations

Plasticity

Parallel/anti-parallel screw dislocations with the dislocation line along 𝑧
(positive sense) and Burgers vectors along ± 𝑧:

𝑦

parallel anti-parallel

𝑥

𝑦

𝐹𝑥 ∝ ± 𝑥

𝐹𝑥 > 0 𝐹𝑥 < 0
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Parallel Dislocations – Dislocation Strengthening

Plasticity

Parallel dislocations generally repel each other. Antiparallel dislocations 

attract each other.

In any case, passing by requires overcoming a certain stress maximum. This 

stress is inversely proportional to the dislocation spacing (equivalent to 𝑦). 

The by-pass stress is an important contribution to dislocation strengthening: 

∆𝜏 ∝
𝐹max

𝑏
∝

1

𝑦
∝ 𝜌

0 1 2 3 4 5 6

-0.25

0.00

0.25

0.50

𝑓
/ 
Τ
1
𝑦

Τ𝑥 𝑦

𝑓⨀−⨀ =
𝑥

𝑥2 + 𝑦2

𝑓⟘−⟘ =
𝑥 ∙ 𝑥2 − 𝑦2

𝑥2 + 𝑦2 2

𝑥

𝑦

(sessile)

(passing)

𝑥

𝑦

(sessile)

(passing)

Lateral dependence of the 

interaction force between a 

passing and a sessile 

dislocation. Note that the 

force is normalized by the 

reciprocal distance of the 

dislocations.
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-3 -2 -1 0 1 2 3

-0.25

0.00

0.25

Parallel Dislocations – Low Angle Grain Boundaries

Plasticity

The glide component of the interaction of two edge dislocations exhibits roots with 

one of them being associated with a minimum in the interaction energy. The 

stacked configuration of the edge dislocations is metastable.

𝑓
/ 
Τ
1
𝑦

Τ𝑥 𝑦

𝑓 =
𝑥 ∙ 𝑥2 − 𝑦2

𝑥2 + 𝑦2 2

𝑥

𝑦

(sessile)

(passing)

Lateral dependence of the 

interaction force between a 

passing and a sessile 

dislocation. Note that the 

force is normalized by the 

reciprocal distance of the 

dislocations.
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-3 -2 -1 0 1 2 3

-0.25

0.00

0.25

Parallel Dislocations – Low Angle Grain Boundaries

Plasticity

The glide component of the interaction of two edge dislocations exhibits roots with 

one of them being associated with a minimum in the interaction energy. The 

stacked configuration of the edge dislocations is metastable.

𝑓
/ 
Τ
1
𝑦

Τ𝑥 𝑦

𝑓 =
𝑥 ∙ 𝑥2 − 𝑦2

𝑥2 + 𝑦2 2

𝑥

𝑦

(sessile)

(passing)

Lateral dependence of the 

interaction force between a 

passing and a sessile 

dislocation. Note that the 

force is normalized by the 

reciprocal distance of the 

dislocations.

Three force-free positions of the 

dislocation in the surrounding.

𝑥

(unstable)𝐸

𝑥

(metastable)𝐸
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Parallel Dislocations – Low Angle Grain Boundaries

Plasticity

The stacked configuration causes an orientation change of the crystals 

adjacent to the dislocations; it‘s a low angle grain boundary (LAGB). Since all 

dislocations have to be moved cooperatively, the mobility of LAGB is small.

adopted from: Gottstein: “Materialwissenschaft und Werkstofftechnik: Physikalische Grundlagen”,

Berlin, Heidelberg: Springer Vieweg, Springer Verlag (2014)

Vogel et al., "Observation of Dislocation in Lineage Boundaries in Germanium" in Physical Review 90 (1953) 489

Etch pits at and misorientation

by a LAGB in Ge.

𝐷

s
p
a
c
in

g
 D

 /
 µ

m

Θ / 10−4

111
1

2
1ത10 with 𝑎 ≈ 5.66 Å

and 𝑏 ≈ 3.99 Å

𝑏

𝐷
= 2 sinΘ ≈ Θ

𝑏

Θ
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Parallel Dislocations – Low Angle Grain Boundaries

Plasticity

The situation can also be described using Frank’s formula for complex 

dislocation patterns containing 𝑁𝑖 dislocations of 𝒃𝑖:

𝒅 =෍
𝑖
𝑁𝑖 𝒃𝑖 = 𝒓 × 𝒍 2 sinΘ ≈ 𝒓 × 𝒍 Θ

𝒍 is the rotation axis of the boundary and 𝒓 is an arbitrary vector within the 

boundary. 𝑁𝑖 is given by the number of intersections of the dislocation lines 

with 𝒓.

The equation is restricted to flat boundaries with narrow stress field. The 

equation does not contain information about the distinct pattern of dislocation 

lines (can also be non-parallel lines).

𝒏 is the normal vector of the boundary and, hence, 𝒏 || 𝒍 are a twist boundaries 

and 𝒏 ⟘ 𝒍 are a tilt boundaries.

D. Hull, D. J. Bacon: “Introduction to Dislocations”, Amsterdam, etc.: Elsevier (2011)
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Parallel Dislocations – Low Angle Grain Boundaries

Plasticity

A single set of dislocations: 𝒅 = 𝑁 𝒃 ≈ 𝒓 × 𝒍 Θ

𝒃 ⟘ 𝒏 since 𝒓 lies arbitrary within the boundary.

Since 𝒓 × 𝒍 = 𝟎 when 𝒓 || 𝒍, the dislocation 

lines must be parallel to 𝒍 (no intersections of the 

dislocations and 𝒓).

The boundary must be a tilt boundary with only 

edge dislocations as seen on two slides before:

𝑁 𝒃 ≈ 𝒍 × 𝒏 × 𝒍 𝑟 Θ = 𝒏 𝑟 Θ, when 𝑟 = 𝒓 , 

finally 𝐷 =
𝑟

𝑁
=

𝑏

Θ
.

D. Hull, D. J. Bacon: “Introduction to Dislocations”, Amsterdam, etc.: Elsevier (2011)

𝐷
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Parallel Dislocations – Low Angle Grain Boundaries

Plasticity

Two sets of dislocations: 𝒅 = 𝑁1 𝒃1 + 𝑁2 𝒃2 ≈ 𝒓 × 𝒍 Θ

𝑁1 𝒃1 + 𝑁2 𝒃2 ∙ 𝒃1 × 𝒃2 ≈ Θ 𝒓 × 𝒍 ∙ 𝒃1 × 𝒃2

0 = 𝒓 × 𝒍 ∙ 𝒃1 × 𝒃2

𝒓 ∙ 𝒍 × 𝒃1 × 𝒃2 = 0

This is satisfied whenever 𝒓 || 𝒍 × 𝒃1 × 𝒃2 .

D. Hull, D. J. Bacon: “Introduction to Dislocations”, Amsterdam, etc.: Elsevier (2011)

expand the equation by

∙ 𝒃1 × 𝒃2
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Parallel Dislocations – Low Angle Grain Boundaries

Plasticity

Case (1): tilt boundary formed from two sets of edge dislocations

𝒍 and 𝒃1 × 𝒃2 lie within the boundary plane

D. Hull, D. J. Bacon: “Introduction to Dislocations”, Amsterdam, etc.: Elsevier (2011)
Asymmetric tilt boundary in a cubic crystal 

by two sets of dislocations.
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Parallel Dislocations – Low Angle Grain Boundaries

Plasticity

Atom positions resulting from rigid rotation 

through angle Θ; open circles represent atoms 

just above the boundary and solid circles 

those just below.

Case (2): 𝒍 is parallel to 𝒃1 × 𝒃2

For the case that 𝒍 || 𝒏, a pure twist 

boundary is formed.

For additionally 𝒃1 ⟘ 𝒃2, the boundary is 

formed only from screw dislocations:

D. Hull, D. J. Bacon: “Introduction to Dislocations”, Amsterdam, etc.: Elsevier (2011)
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Parallel Dislocations – Low Angle Grain Boundaries

Plasticity

Accommodation of the mismatch (in the 

boundary!) by two sets of parallel screw 

dislocations labeled S-S.

Case (2): 𝒍 is parallel to 𝒃1 × 𝒃2

For the case that 𝒍 || 𝒏, a pure twist 

boundary is formed.

For additionally 𝒃1 ⟘ 𝒃2, the boundary is 

formed only from screw dislocations:

D. Hull, D. J. Bacon: “Introduction to Dislocations”, Amsterdam, etc.: Elsevier (2011)
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Parallel Dislocations – Low Angle Grain Boundaries

Plasticity

Case (2): 𝒍 is parallel to 𝒃1 × 𝒃2

For the case that 𝒍 || 𝒏, a pure twist 

boundary is formed.

For additionally 𝒃1 ⟘ 𝒃2, the boundary is 

formed only from screw dislocations:

Gottstein: “Materialwissenschaft und Werkstofftechnik: Physikalische Grundlagen”, Berlin, Heidelberg: Springer Vieweg, Springer Verlag (2014)
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Parallel Dislocations – Low Angle Grain Boundaries

Plasticity

Case (2): 𝒍 is parallel to 𝒃1 × 𝒃2

Take-home messages:

In contrast to edge dislocations, there are at 

least two sets of screw dislocations 

needed in order to built up a symmetric 

(twist) boundary.

Dislocations or dislocation components 

(especially screws or screw components) 

might not contribute to the orientation 

change but do contribute to the energy of 

the pattern!

Gottstein: “Materialwissenschaft und Werkstofftechnik: Physikalische Grundlagen”,

Berlin, Heidelberg: Springer Vieweg, Springer Verlag (2014)

Accommodation of the mismatch (in the 

boundary!) by two sets of parallel screw 

dislocations labeled S-S.
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𝜎𝑥𝑥 /
𝐺

2𝜋 ∙ 1 − ν

-300 -200 -100 0 100 200 300
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300

𝑦/𝑏

𝑥/𝑏

𝜏𝑥𝑦 /
𝐺

2𝜋 ∙ 1 − ν

Remember: 
𝑭

𝐿
=

± 𝑏 𝜏𝑥𝑦
∓ 𝑏 𝜎𝑥𝑥

0

climb interactionglide interaction

Parallel Dislocations – Low Angle Grain Boundaries

Attraction Repulsion
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Plasticity

𝜎𝑥𝑥 /
𝐺

2𝜋 ∙ 1 − ν
𝜏𝑥𝑦 /

𝐺

2𝜋 ∙ 1 − ν

Parallel Dislocations – Low Angle Grain Boundaries

climb interactionglide interaction

Three, stacked edge dislocations with 𝐷 = 72𝑏 (Θ ≈ 0.8°).

Attraction Repulsion

𝑦/𝑏

𝑥/𝑏

cancelation of 

stresses within 𝐷



28

-300 -200 -100 0 100 200 300
-300

-200

-100

0

100

200

300

-0.05

-0.03

0.00

0.03

0.05

Plasticity
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Parallel Dislocations – Low Angle Grain Boundaries

climb interactionglide interaction

Five, stacked edge dislocations with 𝐷 = 72𝑏 (Θ ≈ 0.8°).
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𝐺
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𝜏𝑥𝑦 /

𝐺
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Parallel Dislocations – Low Angle Grain Boundaries

climb interactionglide interaction

Seven, stacked edge dislocations with 𝐷 = 72𝑏 (Θ ≈ 0.8°).

Important for 

recovery: Climb (1) is 

assisted by the stress 

field until glide 

attraction (2) is 

achieved.

1

2

1

2
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𝜎𝑥𝑥 /
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𝜏𝑥𝑦 /

𝐺

2𝜋 ∙ 1 − ν

Parallel Dislocations – Low Angle Grain Boundaries

climb interactionglide interaction

Nine, stacked edge dislocations with 𝐷 = 72𝑏 (Θ ≈ 0.8°).

Important for the 

boundary: The climb 

force within the boundary 

tends to increase 𝐷, 

decrease Θ and, finally, 

decrease 𝛾!
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Parallel Dislocations – Low Angle Grain Boundaries

Plasticity

D. Hull, D. J. Bacon: “Introduction to Dislocations”, Amsterdam, etc.: Elsevier (2011)

W. T. Read & W. Shockley: “Dislocation model of crystal grain boundaries”, Physical Review 78 (1950) 275-289

Asymmetric tilt boundary in a cubic crystal 

by two sets of dislocations.

Read-Shockley’s formula describes the 

specific grain boundary of an asymmetric tilt 

boundary as a function of the misorientation by 

the summation of the elastic energy of the 

dislocations in the boundary:

γ =
𝐺 𝑏

4𝜋 1 − ν
cosϕ + sinϕ Θ 𝐴(ϕ) − lnΘ

This is approximately:

γ ≈
𝛼 𝐺 𝑏

4𝜋 1 − ν
Θ 1 − lnΘ
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Shockley, Bardeen, and the Bell labs …

Plasticity

Shockley made major contributions to solid state 

physics of semiconductors and crystal defects. In 

1956, he was awarded Nobel prize for the 

development of the transistor together with Bardeen 

and Brattain. The entire research group of Shockley 

at Bell labs revolutionized the world by their work on 

the fundamentals and applications of 

semiconductors. Late in his life, he was involve in 

publications on race, intelligence and eugenics.

Apart from the Nobel prize for the transistor, 

Bardeen was awarded with a second Nobel prize 

(there are only three other persons with more than 

one Nobel prize: M. Skłodowska Curie; L. Pauling, 

F. Sanger) for the development of the development 

of the BCS (Bardeen-Cooper-Shrieffer) theory of 

super conductors. The Bardeen-Herring climb 

source (later in Ch. 4) traces back to his work. 

https://de.wikipedia.org/wiki/Datei:William_Shockley,_Stanford_University.jpg

https://en.wikipedia.org/wiki/John_Bardeen#/media/File:Bardeen.jpg
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Rough estimates for Cu:

𝐺 ≈ 50 GPa, 𝑏 ≈ 2.5 Å:
𝐺 𝑏

4𝜋 1 − ν
≈ 1420 mJ/m²

At Θ ≈ 10° = 0.174:
𝐺 𝑏

4𝜋 1−ν
Θ 1 − lnΘ ≈ 680 mJ/m²

Parallel Dislocations – Low Angle Grain Boundaries

Plasticity

D. Hull, D. J. Bacon: “Introduction to Dislocations”, Amsterdam, etc.: Elsevier (2011)

W. T. Read & W. Shockley: “Dislocation model of crystal grain boundaries”, Physical Review 78 (1950) 275-289
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Rough estimates for Al:

𝐺 ≈ 25 GPa, 𝑏 ≈ 2.9 Å:
𝐺 𝑏

4𝜋 1 − ν
≈ 825 mJ/m²

at Θ ≈ 10° = 0.174:
𝐺 𝑏

4𝜋 1−ν
Θ 1 − lnΘ ≈ 394 mJ/m²

Parallel Dislocations – Low Angle Grain Boundaries

Plasticity

Gottstein: “Materialwissenschaft und Werkstofftechnik: Physikalische Grundlagen”, Berlin, Heidelberg: Springer Vieweg, Springer Verlag (2014)
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Dipoles are antiparallel edge dislocations metastable arranged at an angle of 

45°.

Parallel Dislocations – Dipoles

Plasticity

-3 -2 -1 0 1 2 3

-0.25

0.00
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𝑓
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1
𝑦

Τ𝑥 𝑦

𝑓 = −
𝑥 ∙ 𝑦2 − 𝑥2

𝑥2 + 𝑦2 2

𝑥

𝑦

(sessile)

(passing)

Lateral dependence of the 

interaction force between a 

passing and a sessile 

dislocation. Note that the 

force is normalized by the 

reciprocal distance of the 

dislocations.
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Dipoles are antiparallel edge dislocations metastable arranged at an angle of 

45°.

Parallel Dislocations – Dipoles

Plasticity

𝑓
/ 
Τ
1
𝑦

Τ𝑥 𝑦

𝑓 = −
𝑥 ∙ 𝑦2 − 𝑥2

𝑥2 + 𝑦2 2

𝑥

𝑦

(sessile)

(passing)

Lateral dependence of the 

interaction force between a 

passing and a sessile 

dislocation. Note that the 

force is normalized by the 

reciprocal distance of the 

dislocations.

Three force-free positions of the 

dislocation in the surrounding.

𝑥

(unstable)𝐸

𝑥

(metastable)𝐸
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The important configurations described before are metastable. The 

zero transition of force is not sufficient to characterize the metastable 

configuration. It must be associated with a minimum of energy. In case 

of a maximum, the configuration is unstable!

For an advanced discussion, also image forces on dislocations would 

have to be considered. In the vicinity of surfaces or discontinuities, the 

dislocation experiences a force by the surface. The math leads to terms 

equivalent to an attraction by a mirrored dislocation outside the body 

(similar to problems in electrical engineering).

For the lecture, there is only little advance by considering this. Anyhow, 

in TEM experiments you have to consider that surfaces might attract 

dislocations as a practical relevance of this.

Further Notes

Plasticity
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source
  

TTT T T
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When dislocations emitted from a glide source 

meet a barrier, the dislocations cannot 

combine due to same sign. Instead they 

form a (double) pile up.

The (lateral) distribution of (edge) dislocations 

follows under the applied stress 𝜏 due to their 

interaction:

𝑛 𝑥 =
1 − ν

𝐺 𝑏
𝜏

𝑥

𝑙
2

2

− 𝑥2

The total number of dislocations (of equal 

sign) in the pile up at 𝜏 is:

𝑁 = න
0

𝑙
2
𝑛 𝑥 𝑑𝑥 =

1 − ν 𝑙

𝐺 𝑏
𝜏

Parallel Dislocations – Pile-Ups

Plasticity

Pile up from a glide source and the corresponding 

distribution of dislocations in the pile up as a function 

of the applied stress.

𝑛(𝑥)

𝑁
𝑙/2

𝑥

𝑙/2

J. P. Hirth, J. Lothe: “Theory of Dislocations”, Malabar, USA: Krieger Publishing Company (1982, reprint 1992)

blocking 

obstacles

𝑙
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When dislocations emitted from a glide source 

meet a barrier, the dislocations cannot 

combine due to same sign. Instead they 

form a (double) pile up.

The (lateral) distribution of (edge) dislocations 

follows under the applied stress 𝜏 due to their 

interaction:

𝑛 𝑥 =
1 − ν

𝐺 𝑏
𝜏

𝑥

𝑙
2

2

− 𝑥2

The total number of dislocations (of equal 

sign) in the pile up at 𝜏 is:

𝑁 = න
0

𝑙
2
𝑛 𝑥 𝑑𝑥 =

1 − ν 𝑙

𝐺 𝑏
𝜏

Parallel Dislocations – Pile-Ups

Plasticity

Pile up from a glide source and the corresponding 

distribution of dislocations in the pile up as a function 

of the applied stress.

න
−𝑙/2

𝑥 𝑛(𝑥)

𝑁
𝑙/2

d𝑥

𝑥

𝑙/2

J. P. Hirth, J. Lothe: “Theory of Dislocations”, Malabar, USA: Krieger Publishing Company (1982, reprint 1992)

𝑙

source

blocking 

obstacles

with 𝑁 = 5
distributed on 𝑙/2
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Parallel Dislocations – Pile Ups

Plasticity

When dislocations emitted from a glide source 

meet a barrier, the dislocations cannot 

combine due to same sign. Instead they 

form a (double) pile up.

The (lateral) distribution of (edge) dislocations 

follows under the applied stress 𝜏 due to their 

interaction:

𝑛 𝑥 =
1 − ν

𝐺 𝑏
𝜏

𝑥

𝑙
2

2

− 𝑥2

The total number of dislocations (of equal 

sign) in the pile up at 𝜏 is:

𝑁 = න
0

𝑙
2
𝑛 𝑥 𝑑𝑥 =

1 − ν 𝑙

𝐺 𝑏
𝜏

Gottstein: “Materialwissenschaft und Werkstofftechnik: Physikalische Grundlagen”, Berlin, Heidelberg: Springer Vieweg, Springer Verlag (2014)
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Parallel Dislocations – Pile Ups

Plasticity
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glide interaction

Single edge dislocation.
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Parallel Dislocations – Pile Ups

Plasticity
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𝑦/𝑏

𝑥/𝑏

𝜏𝑥𝑦 /
𝐺

2𝜋 ∙ 1 − ν

glide interaction

One dislocation in a double pile up: 𝑁 = 1, 𝑙 = 600𝑏, 𝜏 =
1

600

𝐺𝑏

1−ν
.
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Parallel Dislocations – Pile Ups

Plasticity
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glide interaction

Two dislocations in a double pile up: 𝑁 = 2, 𝑙 = 600𝑏, 𝜏 =
1

300

𝐺𝑏

1−ν
.
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Parallel Dislocations – Pile Ups

Plasticity
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Three dislocations in a double pile up: 𝑁 = 3, 𝑙 = 600𝑏, 𝜏 =
1

200

𝐺𝑏

1−ν
.
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Parallel Dislocations – Pile Ups

Plasticity
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Four dislocations in a double pile up: 𝑁 = 4, 𝑙 = 600𝑏, 𝜏 =
1

150

𝐺𝑏

1−ν
.



46

Parallel Dislocations – Pile Ups

Plasticity
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glide interaction

Five dislocations in a double pile up: 𝑁 = 5, 𝑙 = 600𝑏, 𝜏 =
1

200

𝐺𝑏

1−ν
.

Note: The pile-up has a 

long-range stress field 

into the region adjacent to 

the pile-up!

Note: There is a back-

stress on the source. At 

a given external load, the 

source stops operating.
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𝑙

blocking 

obstacles
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The (single) pile-up exists without stress by 

the repulsion of the dislocations with a lateral 

distribution of:

𝑛 𝑥 =
2𝑁

𝜋 𝑙
𝑙
2

2

− 𝑥2

The single pile-up acts as a single super 

dislocation with 𝑏S = 𝑁 𝑏.

Parallel Dislocations – Pile Ups

Plasticity

Pile-up from a glide source and the according 

distribution of dislocations in the pile-up as a function 

of the applied stress.J. P. Hirth, J. Lothe: “Theory of Dislocations”, Malabar, USA: Krieger Publishing Company (1982, reprint 1992)

𝑛(𝑥)

𝑁
𝑙/2

𝑥

𝑙/2
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𝑙
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The (single) pile-up exists without stress by 

the repulsion of the dislocations with a lateral 

distribution of:

𝑛 𝑥 =
2𝑁

𝜋 𝑙
𝑙
2

2

− 𝑥2

The single pile-up acts as a single super 

dislocation with 𝑏S = 𝑁 𝑏.

Parallel Dislocations – Pile Ups

Plasticity

Pile-up from a glide source and the according 

distribution of dislocations in the pile-up as a function 

of the applied stress.J. P. Hirth, J. Lothe: “Theory of Dislocations”, Malabar, USA: Krieger Publishing Company (1982, reprint 1992)

𝑥

𝑙/2

න
−𝑙/2

𝑥 𝑛(𝑥)

𝑁
𝑙/2

d𝑥

with 𝑁 = 10
distributed on 𝑙
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Parallel Dislocations – Pile Ups

Plasticity
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𝜏𝑥𝑦 /
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glide interaction

Ten dislocations in a double pile up: 𝑁 = 10, 𝑙 = 600𝑏, 𝜏 = 0.

Note: The pile-up has a 

long-range stress field 

into the region adjacent to 

the pile-up!
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Under applied stress, the (single) pile-up 

changes and exhibits following asymmetric 

lateral distribution then:

𝑛 𝑥 =
2 1 − ν

𝐺 𝑏
𝜏

𝑙
2 + 𝑥

𝑙
2
− 𝑥

Note that the dislocations will in this case 

distribute over the length 𝑙 for a given number 

of dislocations 𝑁 and an applied stress 𝜏:

𝑙 =
𝐺 𝑁 𝑏

𝜋 1 − ν 𝜏

Parallel Dislocations – Pile Ups

Plasticity

Pile-up from a glide source and the according 

distribution of dislocations in the pile-up as a function 

of the applied stress.J. P. Hirth, J. Lothe: “Theory of Dislocations”, Malabar, USA: Krieger Publishing Company (1982, reprint 1992)

𝑛 𝑥

𝑁
𝑙

𝑥

𝑙/2

𝑙

blocking 

obstacle



51

Under applied stress, the (single) pile-up 

changes and exhibits following asymmetric 

lateral distribution then:

𝑛 𝑥 =
2 1 − ν

𝐺 𝑏
𝜏

𝑙
2 + 𝑥

𝑙
2
− 𝑥

Note that the dislocations will in this case 

distribute over the length 𝑙 for a given number 

of dislocations 𝑁 and an applied stress 𝜏:

𝑙 =
𝐺 𝑁 𝑏

𝜋 1 − ν 𝜏

Parallel Dislocations – Pile Ups

Plasticity

Pile-up from a glide source and the according 

distribution of dislocations in the pile-up as a function 

of the applied stress.J. P. Hirth, J. Lothe: “Theory of Dislocations”, Malabar, USA: Krieger Publishing Company (1982, reprint 1992)
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Parallel Dislocations – Pile Ups

Plasticity
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glide interaction

Ten dislocations in a double pile up: 𝑁 = 10, 𝑙 = 600𝑏, 𝜏 =
1

188

𝐺𝑏

1−ν
.

Note: The pile-up has a 

long-range stress field 

into the region adjacent to 

the pile-up!
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Grain Boundary Strengthening

The interpretation of grain boundary strengthening with the 

empirical Hall-Petch relationship 𝜎y = 𝜎0 +
𝑘

𝐷
(see fundamental 

lectures) can be based on the stress fields ahead pile ups.

In all instances, a grain with operating sources are considered that 

produce pile ups at its grain boundary. The length of the pile up 

corresponds to roughly the grain size 𝐷 in case of a double pile up or 

half of the grain size 𝐷/2 in case of a stressed single pile up. 

In some cases, neighboring grains might be unfavorable for slip 

due to their orientation.

Macroscopic yield (as it is necessary for 𝜎y) is only observed, when 

all grains exhibit slip activity. Hence, the stress fields of pile ups 

need to operate dislocation sources (Ch. 4f) in the neighboring 

grains.

Plasticity
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100

102As seen on the previous slides, 

a pile up at a grain boundary 

leads to a stress distribution 

in the neighboring grain.

It can be obtained by the 

superposition of the stress 

fields by the dislocations in 

the pile up (in principle all 

stress components would have 

to be considered).

Three distinct regions can be 

obtained:

a stress concentration 

immediate in/at the grain 

boundary 𝜏GB

a near-field 𝜏NF ∝
1

𝑥
or ∝

1

𝑥

a far-field 𝜏FF ∝
1

𝑥2

Grain Boundary Strengthening

Plasticity

Examples for the stress distributions ahead double pile ups for 𝑙/2 = 200000𝑏 and 

several 𝑁 dislocations. Note that other components of the stress fields might also be 

considered and the angular distribution omitted here. 𝑥 starts at the grain boundary. 

𝜏𝑥𝑦(𝑥, 𝑦 = 0) /
𝐺

2𝜋 ∙ 1 − ν

𝑁 = 5

𝑁 = 5000

𝑁 = 500

𝑁 = 50

distance ahead the stressed double pile up 𝑥/𝑏

𝑙𝑙/2
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Grain Boundary Strengthening

Plasticity

Examples for the stress distributions ahead double pile ups for 𝑙/2 = 200000𝑏 and 

several 𝑁 dislocations. Note that other components of the stress fields might also be 

considered and the angular distribution omitted here. 𝑥 starts at the grain boundary. 

𝜏𝑥𝑦(𝑥, 𝑦 = 0) /
𝐺

2𝜋 ∙ 1 − ν

𝑁 = 5

𝑁 = 5000

𝑁 = 500

𝑁 = 50

distance ahead the stressed double pile up 𝑥/𝑏

𝜏GB

𝑙𝑙/2
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in the neighboring grain.

It can be obtained by the 

superposition of the stress 
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Grain Boundary Strengthening

Plasticity

Examples for the stress distributions ahead double pile ups for 𝑙/2 = 200000𝑏 and 

several 𝑁 dislocations. Note that other components of the stress fields might also be 

considered and the angular distribution omitted here. 𝑥 starts at the grain boundary. 
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As seen on the previous slides, 

a pile up at a grain boundary 

leads to a stress distribution 

in the neighboring grain.

It can be obtained by the 

superposition of the stress 

fields by the dislocations in 

the pile up.

Three distinct regions can be 

obtained:

a stress concentration 

immediate in/at the grain 

boundary 𝜏GB

a near-field 𝜏NF ∝
1

𝑥
or ∝

1
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a far-field 𝜏FF ∝
1

𝑥2

Grain Boundary Strengthening

Plasticity

Examples for the stress distributions ahead double pile ups for 𝑙/2 = 200000𝑏 and 

several 𝑁 dislocations. Note that other components of the stress fields might also be 

considered and the angular distribution omitted here. 𝑥 starts at the grain boundary. 

𝜏𝑥𝑦(𝑥, 𝑦 = 0) /
𝐺
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𝑁 = 5
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The 𝜏GB might reach a 

critical stress 𝜏GBS to 

activate a grain boundary 

dislocation source (Ch. 4f).

𝜏GBS can be considered high 

in comparison to stresses to 

operate other types of 

dislocation sources. As a 

very rough estimate 𝜏GBS ≈
𝐺

2𝜋
might be assumed.

Grain Boundary Strengthening – grain boundary source

Plasticity
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Examples for the stress distributions ahead double pile ups for 𝑙/2 = 200000𝑏 and 

several 𝑁 dislocations. Note that other components of the stress fields might also be 

considered and the angular distribution omitted here. 𝑥 starts at the grain boundary. 

𝜏𝑥𝑦(𝑥, 𝑦 = 0) /
𝐺

2𝜋 ∙ 1 − ν

𝑁 = 5

𝑁 = 5000

𝑁 = 500

𝑁 = 50

distance ahead the stressed double pile up 𝑥/𝑏

𝜏GB

𝑙𝑙/2



61

100 101 102 103 104
10-1

100

101

The 𝜏GB might reach a 

critical stress 𝜏GBS to 

activate a grain boundary 

dislocation source (Ch. 4f).

𝜏GBS can be considered high 

in comparison to stresses to 

operate other types of 

dislocation sources. As a 

very rough estimate 𝜏GBS ≈
𝐺

2𝜋
might be assumed.

Grain Boundary Strengthening – grain boundary source

Plasticity

Stress in the grain boundary 𝜏GB ahead a pile up of 𝐷/2 = 𝑙/2 =
200000𝑏 as function number of dislocations in the pile up 𝑁.

𝜏GB /
𝐺

2𝜋 ∙ 1 − ν

𝑁

𝜏GB ≈ 𝜏𝑥𝑦(𝑥 = 5𝑏, 𝑦 = 0)

𝜏GB ∝ 𝑁 𝜏 ∝ 𝑁2
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100

1000

10000The number of dislocations 

in the pile up 𝑁GBS to obtain 
|𝜏GB 𝑁=𝑁GBS = 𝜏GBS depends 

on the length of the pile up 𝑙
and, thus, grain size 𝐷.

The applied stress 𝜏y to 

obtain this 𝑁GBS dislocations 

in the pile up is (see 

previous slides on the pile 

ups):

𝜏y =
𝑁GBS 𝑏

𝑙

𝐺

1 − ν

Note that the applied critical 

stress 𝜏y is orders of 

magnitude lower than 𝜏GB.

Grain Boundary Strengthening – grain boundary source

Plasticity

Number of dislocations in the pile up 𝑁GBS necessary to operate a grain 

boundary dislocation source with 𝜏GB = 𝜏GBS ≈
𝐺

2𝜋
.

𝑁GBS

𝐷/2

𝑏
=
𝑙/2

𝑏

𝜏GB ≈ 𝜏𝑥𝑦(𝑥 = 5𝑏, 𝑦 = 0)

𝑁GBS ∝ 𝜏GBS 𝐷
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Indeed, the applied stress 𝜏y
to obtain 𝑁GBS dislocations 

and, thus, to initiate yielding 

in the pile up follows 1/ 𝐷:

𝜏y ∝
1

𝐷

Grain Boundary Strengthening – grain boundary source

Plasticity

Necessary applied stress 𝜏y to operate the 

grain boundary source. Yielding occurs.

𝜏y /
𝐺

2𝜋 ∙ 1 − ν

−1/ 𝐷/𝑏

𝐷/𝑏

-0.03 -0.02 -0.01 0.00
0.00

0.01

0.02

0.03

1000 2000 5000 10000 100000

𝜏y ∝
1

𝐷
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The rough estimate using:

𝜏GB ≈ 𝑁 𝜏 =
1 − ν 𝐷

𝐺 𝑏
𝜏2

with

ቚ𝜏GB
𝜏=𝜏y

= 𝜏GBS

yields

𝜏y =
𝜏GBS 𝐺 𝑏

1 − ν

1

𝐷

Assuming 𝜏GBS ≈
𝐺

2𝜋
:

𝜏y ≈
𝐺2 𝑏

2𝜋 1 − ν

1

𝐷

Grain Boundary Strengthening – grain boundary source

Plasticity

Necessary applied stress 𝜏y to operate the 

grain boundary source. Yielding occurs.

𝜏y /
𝐺

2𝜋 ∙ 1 − ν

−1/ 𝐷/𝑏

𝐷/𝑏

-0.03 -0.02 -0.01 0.00
0.00

0.01

0.02

0.03

1000 2000 5000 10000 100000

𝜏y ∝
1

𝐷
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For example, data for Cu with 𝐺 ≈

50 GPa, 𝑏 ≈ 2.5 Å, ν ≈ 0.3 yields:

𝜏y ≈
0.38 MPa m

𝐷

Transfer to macroscopic yield 

strength in tensile tests (normal 

stresses) can be obtained by 

multiplication with the Taylor factor 

𝑀T (𝑀T = 3.06 for A1 and A2 

assuming simple slip systems, Ch. 

6a):

𝜎y = 𝑀T 𝜏y =
1.15 MPa m

𝐷

Apart from all roughness of this 

estimate, the order of magnitude is 

almost met.

Grain Boundary Strengthening – grain boundary source

Plasticity

metal 𝜎0 / MPa 𝑘 / MPa m 𝑘 / 𝐺 𝑏

A1 (fcc, Cu prototype)

Ni 80 0.23 0.2

Cu 𝟒𝟎 𝟎. 𝟏𝟏 𝟎. 𝟏

Ag 60 0.1 0.2

Au 150 0.08 0.2

Al 10 0.09 0.2

A2 (bcc, W prototype)

V 150 0.38 0.5

Nb 120 0.34 0.5

Ta 80 0.76 0.7

Cr 320 0.8 0.4

Mo 270 0.63 0.3

W 800 1 0.4

Fe 130 0.31 0.2

Z. C. Cordero, B. E. Knight and C. A. Schuh: “Six decades of the Hall–Petch effect – a survey of 

grain-size strengthening studies on pure metals”, International Materials Reviews 61 (2016) 495-51
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Alternatively, the near field 

stress 𝜏NF ∝
1

𝑥
of the pile 

up might activate a glide 

source (for example Frank-

Read Source, Ch. 4f) at 𝜏GS
in the adjacent grain.

𝜏GS can be considered lower 

than 𝜏GBS. As a very rough 

estimate 𝜏GS ≈ 2𝐺𝑏 𝜌 ≪
𝐺

2𝜋

might be assumed (with 𝜌
being the density of forest 

dislocations, no plastic 

deformation has taken 

place).

Grain Boundary Strengthening – glide source

Plasticity

Examples for the stress distributions ahead double pile ups for 𝑙/2 = 200000𝑏 and 

several 𝑁 dislocations. Note that other components of the stress fields might also be 

considered and the angular distribution omitted here. 𝑥 starts at the grain boundary. 

𝜏𝑥𝑦(𝑥, 𝑦 = 0) /
𝐺

2𝜋 ∙ 1 − ν

𝑁 = 5

𝑁 = 5000

𝑁 = 500

𝑁 = 50

distance ahead the stressed double pile up 𝑥/𝑏

𝑙𝑙/2

𝜏NF ∝
1

𝑥

𝜏NF ∝
1

𝑥
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Alternatively, the near field 

stress 𝜏NF ∝
1

𝑥
of the pile 

up might activate a glide 

source (for example Frank-

Read Source, Ch. 4f) at 𝜏GS
in the adjacent grain.

𝜏GS can be considered lower 

than 𝜏GBS. As a very rough 

estimate 𝜏GS ≈ 2𝐺𝑏 𝜌 ≪
𝐺

2𝜋

might be assumed (with 𝜌
being the density of forest 

dislocations, no plastic 

deformation has taken 

place).

Grain Boundary Strengthening – glide source

Plasticity

Examples for the stress distributions ahead double pile ups for several grain sizes 

𝐷 = 𝑙 at 𝑁 = 500 dislocations. 𝑥 starts at the grain boundary. 

𝜏𝑥𝑦(𝑥, 𝑦 = 0) /
𝐺

2𝜋 ∙ 1 − ν

𝐷 = 10000𝑏

𝐷 = 50000000𝑏

𝑁 = 500 = const.

𝐷 = 1000000𝑏

distance ahead the stressed double pile up 𝑥/𝑏

𝑙𝑙/2

𝜏NF ∝
1

𝑥

𝐷 = 100000𝑏

𝑥

𝑏
= 700
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For a constant distance ahead 

the pile up, the near field stress 

can be approximated by

(𝑁 =
1−ν 𝑙

𝐺 𝑏
𝜏 from the previous 

slides):

𝜏NF ∝ 𝐷 𝜏 ∝
𝑁

𝐷

For the onset of yielding by

ቚ𝜏NF
𝜏=𝜏y

= 𝜏GS

one obtains:

𝜏y ∝
1

𝐷

Note that the result still depends 

on the chosen distance ahead 

the pile by 𝜏y ∝ 𝑥.

Grain Boundary Strengthening – glide source

Plasticity

𝑥 = 700𝑏 = const.
𝑁 = 500 = const.

𝜏NF(𝑥 = 700𝑏) /
𝐺

2𝜋 ∙ 1 − ν

−1/ 𝐷/𝑏

𝐷/𝑏

𝜏NF 𝑥 = 700𝑏 ∝ 𝐷 𝜏 ∝
𝑁

𝐷

Necessary applied stress 𝜏y to operate the 

grain boundary source. Yielding occurs.
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Intersection Reactions of Dislocations

Plasticity

Even in well-recovered crystals, dislocations exists (as we have seen in 

Ch. 4c). Hence, any moving dislocation has to intersect with these non-

parallel “forest dislocations”.

The reaction products follow the rule: the displacement field of one 

dislocation acts on the dislocation line of the other intersected 

dislocation.

Important configurations with 𝒔1 ⊥ 𝒔2 are:

Two edge dislocations with 𝒃1 ‖ 𝒃2
Two edge dislocation with 𝒃1 ⊥ 𝒃2
Edge and screw dislocation with 𝒃1 ⊥ 𝒃2
Two screw dislocations with 𝒃1 ⊥ 𝒃2
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Intersection Reactions of Dislocations

Plasticity

If the Burgers vector of the intersecting dislocation is parallel to 

dislocation line of the intersected dislocation, there is no interaction 

product: a line cannot be distorted along the line!

If the Burgers vector of the intersecting dislocation is inclined with 

respect to the dislocation line of the intersected dislocation, the reaction 

product is of the length and the direction of the Burgers vector of the 

cutting dislocation. Since the Burgers vector is unique to the 

dislocation, the new dislocation segment has the same Burgers vector 

as the intersected dislocation.

There are two possibilities of interaction products:

Kinks: dislocation segments in the slip plane of the intersected 

dislocation. Kinks are glissile and can easily be removed.

Jogs: dislocation segments not lying in the slip plane of the intersected 

dislocation. Cross-slip or climb are needed to (re)move the jog. 
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Intersection Reactions of Dislocations

Plasticity

𝒔1 ⊥ 𝒔2 and 𝒃1 ‖ 𝒃2 with edge dislocations:

𝒃1

𝒃2

before cutting after cutting

The new segments are formed within the former 

slip planes. Hence, they can easily be removed by 

slip. However, they are both of screw character and 

potential cross-slip of the kinks might prevent the 

easy removal!
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Intersection Reactions of Dislocations

Plasticity

𝒔1 ⊥ 𝒔2 and 𝒃1 ⊥ 𝒃2 with edge dislocations:

before cutting after cutting

𝒃1

𝒃2

There is only one new segment itself not being 

within the former slip plane. The jog (edge 

character) needs climb to be (re)moved.

Note that the jog is of 𝑏2 in length. If the intersection 

process occurs iteratively (for example by an 

operating source), the jog length can become 

sufficient to be activated as a two-arm source

(see Ch. 4f).



73

Intersection Reactions of Dislocations

Plasticity

Perpendicular edge and screw dislocations:

before cutting after cutting

𝒃1

𝒃2

The screw dislocation induces a screw-like 

deformation of the slip plane of the edge 

dislocation. This leads to a change of the slip plane 

of the intersecting dislocation and the formation of a 

jog.

This property will be important for helical sources 

and deformation twinning later on in the lecture 

(see Chs. 4f and 7a).
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Intersection Reactions of Dislocations

Plasticity

𝒔1 ⊥ 𝒔2 and 𝒃1 ⊥ 𝒃2 with screw dislocations:

before cutting after cutting

𝒃1

𝒃2

In both dislocation, jogs are formed.
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Dislocation Strengthening

Plasticity

During the intersection process, new dislocation segments 

might be formed. These segments of 𝑏 in length are 

associated with a line energy 
𝑊

𝐿
∝ 𝐺 𝑏2 and, therefore, the 

total energy is increased by 𝑊 ∝ 𝐺 𝑏3.

This excess energy is provided by the external load:

𝑊 = 𝐹 ∙ 𝑏 ∝ 𝜏 𝑏 𝐿𝑓 ∙ 𝑏; 𝐿𝑓 is the free path of the glissile

dislocations.

The intersection process is another contribution to 

dislocation strengthening:

𝜏 ∝
𝐺 𝑏

𝐿𝑓
≈ 𝐺 𝑏 𝜌
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Vacancy Generation by Jogged Screws

Note that the further movement of 

the jogged screw dislocation with  

𝒃1 requires climb of the edge jog 

portion.

Hence, the moving jog leaves a trail 

of vacancies behind.

At sufficiently low temperatures, the 

otherwise mobile screw dislocations 

become markedly slowed down. 

This might be one important 

contribution to serrated plastic 

deformation at cryogenic 

temperatures (< 35 K, see Ch. 5).

Plasticity

after cutting

𝒃1

𝒃2
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Vacancy Generation by Jogged Screws

Note that the further movement of 

the jogged screw dislocation with  

𝒃1 requires climb of the edge jog 

portion.

Hence, the moving jog leaves a trail 

of vacancies behind.

At sufficiently low temperatures, the 

otherwise mobile screw dislocations 

become markedly slowed down. 

This might be one important 

contribution to serrated plastic 

deformation at cryogenic 

temperatures (< 35 K, see Ch. 5).

Plasticity

A. S. Tirunilai: “Dislocation-based serrated plastic flow of high entropy alloys at cryogenic temperatures”, Acta Materialia 200 (2020) 980-991

𝒃1

𝒃2

𝒃1

Sequence of the 

intersection process and 

movement of the jog for 

an A1 metals (see 

Thompson tetrahedron).
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Summary

The interaction of dislocations provides two important contributions 

to dislocation strengthening: passing by and cutting. The stress 

ahead of pile-ups contributes to grain boundary strengthening.

Parallel dislocations can form metastable configurations that play a 

significant role in dislocation patterning during plastic deformation.

Plasticity


