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Peierls Potential

Plasticity

Without external load, dislocations are in mechanical equilibrium 

with local minimum potential energy.

Due to the periodicity of the crystal, similar situations of minimum 

potential energy are achieved at periodic distances. The 

movement of a dislocation line requests overcoming the energy 

barrier between the local minima.

External mechanical load can provide sufficient work to overcome 

the barrier. At finite temperature, overcoming the barrier is 

assisted by thermal fluctuation.

Without external load, thermal fluctuations don’t lead to a net motion of 

the dislocation line but a constant swapping of the dislocation line 

between adjacent minima.

The periodic potential the dislocation is experienced to is called 

Peierls potential.
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Peierls Potential

Plasticity

J. Freudenberger (2004): „Physikalische Werkstoffeigenschaften“

https://www.ifw-dresden.de/de/ifw-institutes/ikm/lectures/vorlesungsskript-physikalische-werkstoffeigenschaften

glide ↔

relaxed situation

(low energy)

as obtained without

external stress

transition state

(high energy)

only obtained by applying

an external stress

or

by thermal fluctuation

or both

relaxed situation

(low energy)

as obtained without

external stress
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Peierls Potential

Plasticity

Note that between two relaxed, low energy configurations of the 

dislocation, exactly one Burgers vector displacement of the 

dislocation is obtained. The Peierls potential exhibits a periodicity of 𝒃.

From mathematical point of view, two approximations might be 

performed:

The displacement field of a dislocation (for example Ch. 4c) is 

assumed constant during its motion. This problem can be solved 

analytically, as done by Peierls (with the later correction by Nabarro) for 

example.

The other, more realistic option is to obtain the relaxed configuration of the 

moving dislocation at all positions even under applied stress. This can only 

be done numerically.
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Peierls-Nabarro Equation

Plasticity

The analytical treatment of Peierls is based on the treatment of Frenkel (see Ch. 4a, 

interaction of two complete half crystals) but considering the atoms immediately above 

and below the slip plane in a crystal containing a dislocation.

The Peierls equation is obtained by:

Assuming a dislocation moving in 𝑥 direction. Above the slip plane, atoms at 𝑥’ are displaced by 

𝑢 𝑥’ against the atoms below the slip plane. The Burgers vector must be distributed along 𝑥’

with small portions of 
d𝑢

d𝑥’
d𝑥’ that integrate to 𝑢 𝑥’ → −∞ = 𝑏 and 𝑢 𝑥’ → +∞ = 0.

The shear stress introduced by such dislocations of strength 
d𝑢

d𝑥’
d𝑥’ is (obtained using 𝜏𝑥𝑦 for an 

edge dislocation in Ch. 4c with 𝑏 =
d𝑢

d𝑥’
d𝑥’ and 𝑥 = 𝑥’, 𝑦 = 0):

𝜏𝑥𝑦 =
𝐺

𝜋 1 − ν

d𝑢

d𝑥’

d𝑥’

𝑥 − 𝑥’

This needs to be equilibrated by the stress across the planes separating the upper and the lower 

half crystal as obtained from the Frenkel model:

𝜏𝑥𝑦 =
𝐺 𝑏

2𝜋 𝑑
sin

2𝜋 𝑢

𝑏
𝑑 denotes the distance between the atoms above and below the slip plane.

The equilibrium is obtained by the following conditions (Peierls equation):

න
−∞

+∞ d𝑢

d𝑥’

d𝑥’

𝑥 − 𝑥’
=

1 − ν 𝑏

2ℎ
sin

2𝜋 𝑢

𝑏
F.R.N. Nabarro: “Fifty-year study of the 

Peierls-Nabarro stress”, Materials Science 

and Engineering A 234-236 (1997) 67-76
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Peierls-Nabarro Equation

Plasticity

The solution yields for a straight dislocation in a cubic crystal at 

0 K exhibits a Peierls potential with following amplitude:

𝐸PN =
𝐺 𝑏2

𝜋(1 − ν)
𝑒−

2𝜋 𝑤
𝑏

The external stress needed to overcome the barrier is given by the 

maximum derivative of the Peierls potential:

𝜏PN =
2𝜋

𝑏2
𝐸PN =

2𝐺

1 − ν
𝑒−

2𝜋 𝑤
𝑏
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Peierls-Nabarro Equation

Plasticity

The derivation requires a flat core of a 

single dislocation (no spread out of 

the slip plane, no dissociation of 

the dislocation):

𝑤 denotes the width of the dislocation 

(characteristic distance of fade out of 

the disregistry ∆𝑢 by the dislocation).

The width 𝑤 correlates with the lattice 

spacing of the lattice plane 𝑤 ≈
𝑑

1−ν

and 𝑤 ≈ 𝑑 for the edge and screw 

dislocation, respectively. In the simple 

cubic crystal: 𝑑 =
𝑎

ℎ2+𝑘2+𝑙2
.

𝑏 denotes the Burgers vector. In the 

simple cubic crystal 𝑏 = 𝑎.

Illustration of the physical meaning of 𝑤 for an edge 

dislocation: the displacement difference ∆𝑢 = 𝑢 A − 𝑢(B)
describes the disregistry by the introduction of the dislocation.

D. Hull, D. J. Bacon: “Introduction to Dislocations”,

Amsterdam, etc.: Elsevier (2011)
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Peierls and Nabarro

Plasticity

R. Peierls was a Jewish, German scientist 

significantly involved in the work on the newly 

introduced quantum mechanics together with the 

other German scientists back at the time: 

Sommerfeld, Heisenberg (PhD supervisor), 

Bloch, etc. During Hitler’s rise to power, he spent 

time in Cambridge and decided not to come back 

to Germany. He stayed in Great Britain, e.g. 

Manchester, Cambridge, Birmingham and Oxford 

and became British citizen during World War 

Second.

F.R.N. Nabarro was born in England and was 

appointed professor in Johannesburg in 1953. 

Based on work by Zener, he proposed the impact 

of grain boundaries to plastic deformation and, of 

course, made important contributions to the 

description of creep.

https://en.wikipedia.org/wiki/File:Sir_Rudolf_Ernst_Peierls.jpg

https://en.wikipedia.org/wiki/File:Frank_Nabarro00.jpg



10

Peierls-Nabarro Equation

Plasticity

The result is much smaller than the stress needed for the slip 

process of two half crystals:

𝑏 ≈ 2.5 Å, 𝑑 ≈ 2.1 Å:

𝜏PN =
2𝐺

1 − ν
𝑒−

2𝜋 𝑑
𝑏 ≈ 0.02 𝐺 ≪

𝐺

2𝜋
= 0.16 𝐺
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Peierls-Nabarro Equation

Plasticity

Low critical stresses are achieved on low indexed lattice planes in 

low indexed directions.

Low indexed lattice planes exhibit high atomic packing factor.

Even though the derivation of the equation is limited, these 

considerations turned out to be valid for many crystal structures. 

The statement regarding low indexed lattice planes and directions 

remains also valid; just use the primitive unit cell of a structure.
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Peierls-Nabarro Equation

Plasticity

Based on the considerations by the Peierls-Nabarro equation, screw 

dislocations exhibit a higher critical stress then edge dislocations:

𝑏 ≈ 2.5 Å, 𝑑 ≈ 2.1 Å:

𝜏𝑃𝑁 =
2𝐺

1 − ν
𝑒−

2𝜋
𝑑
1−ν
𝑏 ≈ 0.002 𝐺 < 0.02 𝐺
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Peierls-Nabarro Equation

Plasticity

Important discrepancies are found by:

Extended core configurations > A2 metals and alloys (bcc)

Non-straight dislocations > kink pair formation and propagation in 

A2 metals and alloys (bcc)

Dissociation (not in the direction of Burgers vector of the full 

dislocation) > A1 metals and alloys (fcc) and most intermetallic 

materials
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Comparison with extrapolated yield strength

Plasticity

dissoc. dislocations

T. Suzuki und S. Takeuchi: “Correlation of 

Peierls-Nabarro Stress with Crystal Structure” in 

Revue de Physique Appliquee 23 (1988) 685-685

non-flat cores

𝜏PN, 𝜏c/𝐺

𝑑/𝑏

full dislocations

1

2𝜋
≈ 16 %

≈ 2%

≈ 2‰
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Dislocation Velocity

Plasticity

The dislocation can move once the critical 

stress is applied.

The velocity typically scales with the applied 

stress by a power law:

𝑣 ∝
𝜏

𝜏0

𝑛

𝑛 is usually large.

Velocity determination by pit etching in LiF before and 

after plastic deformation (no scale bar).

J. P. Hirth und J. Lothe: „Theory of dislocations“, Malabar: Krieger Publishing Company (1982)
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The dislocation can move once the critical 

stress is applied.

The velocity typically scales with the applied 

stress by a power law:

𝑣 ∝
𝜏

𝜏0

𝑛

𝑛 is usually large.

Dislocation Velocity

Plasticity

Dislocation velocity in LiF.

D. Hull, D. J. Bacon: “Introduction to Dislocations”, Amsterdam, etc.: Elsevier (2011)

v
e

lo
c
it
y

/ 
m

/s

shear stress / MPa

edge

components

screw

components

shear waves ≈ 3600m/s
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The dislocation can move once the critical 

stress is applied.

The velocity typically scales with the applied 

stress by a power law:

𝑣 ∝
𝜏

𝜏0

𝑛

𝑛 is usually large.

Dislocation Velocity

Plasticity

Dislocation velocity in Fe-Si.

D. Hull, D. J. Bacon: “Introduction to Dislocations”, Amsterdam, etc.: Elsevier (2011)

v
e

lo
c
it
y

/ 
m

/s

shear stress / MPa



18

Slightly above on-set stress, the 

equation is usually used in the following 

form:

𝑣 ≈
𝑏

𝐵
𝜏𝑚

The velocity is in the order of 1 m/s at 

𝑚 = 1 in metals at room temperature 

and 𝑚 = 2…5 in alloys. At low 

temperatures, 𝑚 = 4… 12 is found.

Using a Newton equation of motion, this 

can be used to describe dislocation 

motion in dislocation dynamics 

simulations.

𝐵 is typically dominated by phonon 

damping.

Dislocation Velocity

Plasticity

D. Hull, D. J. Bacon: “Introduction to Dislocations”, Amsterdam, etc.: Elsevier (2011) Comparison of various materials.

v
e

lo
c
it
y

/ 
m

/s

shear stress / MPa
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High-Speed Motion

Plasticity

When strain rate becomes very high, e.g. impact experiments or 

localized plastic deformation at crack tips, dislocations can be 

accelerated significantly.

Dislocations are displacement field moving through their own 

displacement field.
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High-Speed Motion

Plasticity

Analogous to theory of relativity, there are special velocities observed 

for the motion of a dislocation as moving displacement field. Different 

speeds depending on the type of the propagating wave need to be 

considered.

In solids, following speeds of propagating elastic waves are important 

in the following:

Shear/transverse waves with 𝑐T
(amplitude perpendicular to the propagation direction)

Pressure/longitudinal waves with 𝑐L ≈ 2 𝑐T
(volumetric density changes, amplitude in the propagation direction)

Rayleigh waves with 𝑐R ≈ 0.87…0.95 𝑐T
(surface acoustic wave)
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Stress Fields of Moving Dislocations

Plasticity

For the moving dislocation, the equilibrium condition 
changes by the inertia term to:

𝜕𝜎𝑖𝑘
𝜕𝑥′𝑘

− 𝜌
𝜕²𝑢𝑖
𝜕𝑡²

= 0

For a straight dislocation along 𝑧 and a movement 
perpendicular to it in 𝑥 direction (simple glide only), the 
following transform to a moving coordinate system 
simplifies the equation:

𝑥 = 𝑥′ − 𝑣 𝑡
𝜕/𝜕𝑥′ = 𝜕/𝜕𝑥
𝜕/𝜕𝑡 = −𝑣 𝜕/𝜕𝑥

For the screw dislocation with 𝑢𝑥 = 𝑢𝑦 = 0, the differential 

equation 1 − ൗ𝑣2

𝑐T
2

𝜕2𝑢𝑧

𝜕𝑥2
+

𝜕2𝑢𝑧

𝜕𝑦2
= 0 with 𝑐T = Τ𝐺 𝜌 follows.
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Stress Fields of Dislocations

Plasticity

Screw dislocation with dislocation line along 𝑧 and plane of displacement within 𝑥 − 𝑧:

Ansatz: 𝑢𝑥 = 𝑢𝑦 = 0, 𝑢𝑧 =
𝑏

2𝜋
tan−1(𝑦, 𝑥)

𝜎𝑖𝑘 =

0 0 𝜏𝑥𝑧
0 0 𝜏𝑦𝑧
𝜏𝑥𝑧 𝜏𝑦𝑧 0

=
𝐺 ∙ 𝑏

2𝜋

0 0 −
𝑦

𝑥2 + 𝑦2

0 0
𝑥

𝑥2 + 𝑦2

−
𝑦

𝑥2 + 𝑦2
𝑥

𝑥2 + 𝑦2
0

In case of a finite cylinder, torque equilibrium is not fulfilled. The is an additional (constant) shear 

stress necessary in order to avoid spinning of the arrangement.

J. P. Hirth und J. Lothe: „Theory of dislocations“ (1982) Remember Ch. 4c

𝑥

𝑦

𝑧, 𝑏
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Screw dislocation with dislocation line along 𝑧 and plane of displacement within 𝑥 − 𝑧 and 

moving in 𝑥 direction (glide):

Stress Fields of Moving Dislocations

Plasticity

Ansatz: 𝑢𝑥 = 𝑢𝑦= 0, 𝑢𝑧 =
𝑏

2𝜋
tan−1(β 𝑦, 𝑥) mit β = 1 − ൗ𝑣2

𝑐𝑇
2

𝜎𝑖𝑘 =

0 0 𝜏𝑥𝑧
0 0 𝜏𝑦𝑧
𝜏𝑥𝑧 𝜏𝑦𝑧 0

=
𝐺 ∙ 𝑏

2𝜋
β

0 0 −
𝑦

𝑥2 + β2 𝑦2

0 0
𝑥

𝑥2 + β2 𝑦2

−
𝑦

𝑥2 + β2 𝑦2
𝑥

𝑥2 + β2 𝑦2
0

J. Weertman und J. R. Weertman: „Moving dislocations“ in „Dislocations in Solids“ by F. R. N. Nabarro (Ed.),

North-Holland Publ. Company, Amsterdam, New York, Oxford (1980)

𝑥, 𝑣

𝑦

𝑧, 𝑏
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Screw dislocation with dislocation line along 𝑧 and plane of displacement within 𝑥 − 𝑧:

Stress Fields of Dislocations

Plasticity

J. P. Hirth und J. Lothe: „Theory of dislocations“ (1982)

𝜎𝜃𝑧 =
𝐺 ∙ 𝑏

2𝜋 ∙ 𝑟

𝜎𝑟𝑧 = 𝜎𝑟𝜃 = 𝜎𝑟𝑟 = 𝜎𝜃𝜃 = 𝜎𝑧𝑧 = 0

If you want to do it your own, you also have to convert the 

divergence to cylinder coordinates ൗ𝜕 𝜕𝑥𝑖
𝜎𝑖𝑘 = 0!

Remember Ch. 4c

𝜃
𝑟

𝑧, 𝑏
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Screw dislocation with dislocation line along 𝑧 and plane of displacement within 𝑥 − 𝑧 and 

moving in 𝑥 direction (glide):

Stress Fields of Moving Dislocations

Plasticity

J. P. Hirth und J. Lothe: „Theory of dislocations“ (1982)

𝜎𝜃𝑧 =
𝐺 ∙ 𝑏 ∙ β

2𝜋 ∙ 𝑟 ∙ cos² 𝜃 + β2 sin² 𝜃

𝜎𝑟𝑧 = 𝜎𝑟𝜃 = 𝜎𝑟𝑟 = 𝜎𝜃𝜃 = 𝜎𝑧𝑧 = 0

If you want to do it your own, you also have to convert the 

divergence to cylinder coordinates ൗ𝜕 𝜕𝑥𝑖
𝜎𝑖𝑘 = 0!

𝑣
𝜃
𝑟

𝑧, 𝑏
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Screw dislocation with dislocation line along 𝑧 and plane of displacement within 𝑥 − 𝑧 and 

moving in 𝑥 direction (glide):

Stress Fields of Dislocations

Plasticity

𝑥
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-5
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-0.15

0.00

0.15

0.30

-10 -5 0 5 10
-10

-5

0

5

10

-0.30

-0.15

0.00

0.15

0.30

𝜏𝑦𝑧 /
𝐺

2𝜋
𝜏𝑥𝑧 /

𝐺

2𝜋

± 0.15

𝑦/𝑏

𝑥/𝑏

+

−
+−

core region ≈ 𝑏

0.15
𝐺

2𝜋
is in the order of 1.2 GPa for Cu. 𝑐T is in the about 2300 m/s.

𝑣 = 0, 1 − ൗ𝑣2

𝑐T
2 = 1
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Screw dislocation with dislocation line along 𝑧 and plane of displacement within 𝑥 − 𝑧 and 

moving in 𝑥 direction (glide):

Stress Fields of Moving Dislocations

Plasticity

0.15
𝐺

2𝜋
is in the order of 1.2 GPa for Cu. 𝑐T is in the about 2300 m/s.

𝑣 = 0.9 𝑐T, 1 − ൗ𝑣2

𝑐T
2 = 0.19

𝑥

-10 -5 0 5 10
-10

-5

0

5

10

-0,30

-0,15

0,00

0,15

0,30

-10 -5 0 5 10
-10

-5

0

5

10

-0,30

-0,15

0,00

0,15

0,30
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𝐺

2𝜋

𝑦/𝑏

𝑥/𝑏

+

−
+−

± 0.15

core region ≈ 𝑏
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Screw dislocation with dislocation line along 𝑧 and plane of displacement within 𝑥 − 𝑧 and 

moving in 𝑥 direction (glide):

Stress Fields of Moving Dislocations

Plasticity

0.15
𝐺

2𝜋
is in the order of 1.2 GPa for Cu. 𝑐T is in the about 2300 m/s.

𝑥
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𝐺
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𝜏𝑥𝑧 /

𝐺

2𝜋

𝑦/𝑏

𝑥/𝑏

+

−

𝑣 = 0.99 𝑐T, 1 − ൗ𝑣2

𝑐T
2 = 0.0199

± 0.15

core region ≈ 𝑏
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High-Speed Motion

Plasticity

The stress field of screw dislocations contracts by the movement 

of the dislocation.

The changing stress field causes a change in line energy of the 

dislocation (kinetic energy contribution in addition to only elastic 

contribution). The energy diverges when approaching 𝒄𝐓:

𝑊⨀

𝐿
=
1

β

𝐺 𝑏2

4𝜋
ln
𝑅

𝑟0
The dislocation-dislocation interaction changes due to the 

changing stress field.
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Interaction of Moving Dislocations

Plasticity

-10 -5 0 5 10
-10

-5

0

5

10

-0,30

-0,15

0,00

0,15

0,30

-10 -5 0 5 10
-10

-5

0

5

10

-0,30

-0,15

0,00

0,15

0,30

𝐹𝑥
𝐿
/
𝐺 ∙ 𝑏2

2𝜋

𝑦/𝑏

𝑥/𝑏

𝑣 = 0.99 𝑐T, 1 − ൗ𝑣2

𝑐T
2 = 0.0199

Example: glide component of the interaction force between parallel moving screw 

dislocations 
𝐹𝑥

𝐿
=

𝐺∙𝑏2

2𝜋

β 𝑥

𝑥2 + β2 𝑦2

𝐹𝑥
𝐿
/
𝐺 ∙ 𝑏2

2𝜋

𝑣 = 0, 1 − ൗ𝑣2

𝑐T
2 = 1
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Interaction of Moving Dislocations

Plasticity

Example: glide component of the interaction force between parallel moving screw 

dislocations 
𝐹𝑥

𝐿
=

𝐺∙𝑏2

2𝜋

β 𝑥

𝑥2 + β2 𝑦2

0 1 2 3 4 5 6
0,0

0,1

0,2

0,3

0,4

0,5

𝑓
/ 
Τ
1
𝑦

Τ𝑥 𝑦

𝑣 = 0.99 𝑐T

𝑣 = 0

The stress for passing by 

significantly decreases. Closely 

spaced parallel screw 

dislocations can collapse. This is 

especially important for dissociated 

dislocation with otherwise repelling 

screw components.

𝑓 =
β 𝑥

𝑥2 + β2 𝑦2
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Interaction of Moving Dislocations

Plasticity

Example: cross-slip component of the interaction force between parallel moving screw 

dislocations 
𝐹𝑦

𝐿
=

𝐺∙𝑏2

2𝜋

β 𝑦

𝑥2 + β2 𝑦2

-10 -5 0 5 10
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-5

0
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-0,30

-0,15

0,00

0,15
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-10 -5 0 5 10
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-5

0

5
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-0,30

-0,15

0,00

0,15

0,30

𝐹𝑦

𝐿
/
𝐺 ∙ 𝑏2

2𝜋

𝑦/𝑏

𝑥/𝑏

𝑣 = 0.99 𝑐T, 1 − ൗ𝑣2

𝑐T
2 = 0.0199

𝐹𝑦

𝐿
/
𝐺 ∙ 𝑏2

2𝜋

𝑣 = 0, 1 − ൗ𝑣2

𝑐T
2 = 1
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Interaction of Moving Dislocations

Plasticity

Example: cross-slip component of the interaction force between parallel moving screw 

dislocations 
𝐹𝑦

𝐿
=

𝐺∙𝑏2

2𝜋

β 𝑦

𝑥2 + β2 𝑦2

0 1 2 3 4 5 6
10-1

100

101

102

103

104

𝑓
/ 
1

𝑦

𝑣 = 0.99 𝑐T

𝑣 = 0

There is a stronger tendency for 

cross-slip which can lead to 

attraction of the second 

dislocation into the same slip 

plane and collapse due to the 

vanishing glide interaction.

𝑓 =
β 𝑦

𝑥2 + β2 𝑦2

𝑥 = 0
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High-Speed Motion

Plasticity

The discussion of edge dislocations is more complex since both, 𝑐L and 
𝑐R have to be considered.

For 𝑣 < 𝑐R (sub-sonic), the zero transitions of 𝝉𝒙𝒚 shift from 𝒙 = 𝒚
towards the slip plane. Remember: the zero transitions of 𝜏𝑥𝑦 are 
responsible for the metastable configurations of parallel edge 
dislocations (see Ch. 4d).

For 𝑐R < 𝑣 < 𝑐T (trans-sonic), there is no 𝜏𝑥𝑦 within the slip plane 
anymore and the signs of 𝜏𝑥𝑦 are opposite to what is observed for the
stationary dislocation. Parallel edge dislocation attract each other, 
then!

Also in the case of edge dislocations, the considerations on the 
interaction of stationary dislocations cannot be easily transferred 
to fast moving dislocations.

The line energy of a moving edge dislocation also diverges when 
𝑣 → 𝑐T.
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Interaction of Moving Dislocations

Plasticity
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𝜏𝑥𝑦 /
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Example: glide component of the interaction 

force between parallel moving edge 

dislocations: 
𝐹𝑦

𝐿
= 𝑏 𝜏𝑥𝑦

𝑣 = 0

+−

+ −

+ −

+−

+ −

+ −

𝑣 = 0 0 < 𝑣 < 𝑐R 𝑣 > 𝑐R

+ −

+ −
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High-Speed Motion

Plasticity

The aforementioned considerations can also be done for climb 

processes.

The aforementioned considerations are restricted to no dampening of 

the dislocation motion. The interaction of dislocations with phonons 

gives rise to dampening.

In principle, the slip plane can release energy to the dislocation 

during motion! This allows for supersonic motion of dislocations. 

Especially in real crystals such energy transfer can be assume, e.g. by 

a removal of a stacking fault by a gliding partial dislocation.

Advanced theories with no discontinuity in consideration also limit the 

energy required to move the dislocation at high speeds.
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Summary

Plasticity

There is a critical stress needed to move a dislocation.

The Peierls-Nabarro equation predicts densely packed planes and 

directions as slip planes and directions, respectively.

The stress required to move the dislocation at 0 K is much smaller 

than 
𝐺

2𝜋
. Thermal activation can assist dislocation motion.

Dislocation velocity as a function of applied stress follows a power-law.

At high velocities, the equation of motion has to be corrected by 

relativistic terms. This has significant impact on the stress fields 

and energy of the dislocations and, therefore, on the interaction of 

dislocations. There are limiting speeds.


