
Institute for Applied Materials (IAM-WK)

www.kit.eduKIT – The Research University in the Helmholtz Association

Plasticity
Lecture for “Mechanical Engineering” and “Materials Science and Engineering”

Dr.-Ing. Alexander Kauffmann (Bldg. 10.91, R. 375)

Prof. Martin Heilmaier (Bldg. 10.91, R. 036)

Version 22-07-14



2

Topics

Dislocations in Metals and Alloys: A1

Octahedral Slip Systems

Thompson Tetrahedron

Undissociated Dislocations

Shockley and Frank Partial Dislocations

Stacking Faults and Twin Boundaries

Cross Slip

Locks

Plasticity



3

Strukturbericht Designation A1

Plasticity

Face centered cubic metals and alloys are closed packed. The 

closed packed planes are 111 . The shortest distance between atoms 

is 
1

2
110 . (Remember: use of the conventional cell here.)

1

2
110

111
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Octahedral Slip System

Plasticity

111
1

2
1ത10 slip systems are referred to as octahedral slip systems.

In fcc metals and alloys, slip on non-octahedral systems is assumed 

to be not possible. Any reaction products with combinations of 

Burgers vectors and slip planes (given by the Burgers vector and the 

line sense) which do not belong to the octahedral slips systems are 

assumed to be sessile.

There are various short notations in literature to describe octahedral 

systems and reactions on these systems available. The Thompson 

tetrahedron is by far the most common. Anyhow, the use of it is 

declining.
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Thompson Tetrahedron

Plasticity

The edges of the Thompson tetrahedron are given by the connection of four 

nearest neighbors in the A1 crystal structure.

Important to note here:

The Thompson tetrahedron is no unit cell! It is not possible to obtain a perfect crystal by 

translation symmetry or application of other symmetry operations on it!

The Thompson tetrahedron connects nearest neighbors and not corners of the 

conventional unit cell.

Often missed in literature: Similar to what was seen for the Burgers circuits, the 

Thompson tetrahedron treatment contains certain unambiguousness as long as the slip 

to crystal is not explicitly defined. It is important for the distinct atomic arrangement if slip 

occurs outside the Thompson tetrahedron (often implicitly assumed) or inside. Many 

reaction are possible by vector considerations but impossible due to the atomic 

arrangement resulting from that.

The corners are denoted by Latin capital letters: A, B, C, D. The Burgers 

vectors of undissociated dislocations are duplets of Latin capital letters. The 

slip planes are triplets of Latin capital letters.
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Thompson Tetrahedron

Plasticity

(1 1)1

D

[100] [010]

[001]

C

B

A

A. Kauffmann: „Gefügeverfeinerung durch mechanische Zwillingsbildung in Kupfer  und Kupfermischkristalllegierungen“, Diss. TU Dresden (2014)
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Thompson Tetrahedron

Plasticity

The flat projection of the 

tetrahedron is useful.

There are four slip planes with 

three slip directions each. Only 

two of them are linear 

independent.

There are eight independent 

slip systems.

A B

C

D

D D

( )111

( 11)1

(11 )1

(1 1)1
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2
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Undissociated Dislocations

Plasticity

The undissociated edge dislocation is characterized by following 

vectors:

Slip plane normal: 𝒏 = 1ത11 , ABC

Burgers vector: 𝒃 =
1

2
011 , AC

Line vector: 𝒔 =
1

6
21ത1 , δB

Extra half-plane: 011

The extra half-planes of 110 -type exhibit following stacking sequence:

… ABABAB …. Hence, the undissociated edge dislocations is built up 

from two additional 110 planes to preserve the stacking sequence!
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Undissociated Dislocations

Plasticity

Laue indexing: 220

A positions

B positions

A

B

A

B

A B A B
B
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Undissociated Dislocations

Plasticity

stacking sequence

of 011 A B

1ത11

Two additional 110 planes 

forming the edge dislocation and 

preserving the general crystal 

structure around the defect.
A B

1

2
011

21ത1
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Shockley Partial Dislocations

Plasticity

As we have seen in Ch. 4c, the line energy (as the largest contribution 

to the dislocation energy) scales with 
𝑊

𝐿
∝ 𝐺 𝑏2.

Since 
1

2
1ത10 is the shortest distance between atoms in an A1 crystal 

structure, any further reduction in Burgers vector length leads to a 

further distortion of the crystal! The dissociation of dislocations is 

therefore restricted to special cases.

One of these cases is the formation of Shockley partial dislocations:
1

2
011 =

1

6
121 +

1

6
ത112

When neglecting the character of the dislocation and the interaction 

energy between the partials, we can estimate ∝ 𝑏2: 
1

2
>

1

6
+

1

6
=

1

3
.

Shockley partial dislocations border an intrinsic stacking fault.
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Dissociated Dislocations

Plasticity

A B A B

dissociation width 𝑥

1ത11

1

2
011

21ത1

stacking sequence

of 011

The dissociation occurs by adding 

additional pairs of 011 planes. 

Note that outside the dislocation 

region, the crystal remains 

unaffected!

The Shockley partial dislocations 

are the single extra 110 planes 
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Dissociated Dislocations

Plasticity

A B A B

dissociation width 𝑥

1ത11

1

2
011

21ത1

stacking sequence

of 011

The intrinsic stacking fault is seen 

in this plot by the color transition 

within the slip plane bordered by 

the two partial dislocations.
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Shockley Partial Dislocations

Plasticity

Undistorted stacking sequence in A1 metals and alloys:

111

A

B

C

C
B
A
C
B
A
C
B
A
C
B
A
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Shockley Partial Dislocations

Plasticity

No change for the undissociated dislocation:

A plane

B plane

C plane

AC

C
B
A
C
B
A
C
B
A
C
B
A

C
B
A
C
B
A
C
B
A
C
B
A
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Shockley Partial Dislocations

Plasticity

In the region bordered by the partial dislocations, an intrinsic stacking fault is 

formed. The leading partial dislocation opens the stacking fault by shifting from 

B to C. The trailing partial closes the stacking fault by shifting from C to B:

A
C
B
A
C
A
C
B
A
C
B
A

C
B
A
C
B
A
C
B
A
C
B
A

C
B
A
C
B
A
C
B
A
C
B
A

Aδ δC

A plane

B plane

C plane
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Thompson Tetrahedron

Plasticity

Burgers vectors of Shockley 

partial dislocations are given 

by connection of the corners 

with the centers of the slip 

planes in the Thompson 

tetrahedron.

The centers are denoted by 

Greek lower cases:

1

2
011 =

1

6
121 +

1

6
ത112

AC = Aδ + δC

A B

C

D

D D
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Shockley Partial Dislocations

Plasticity

The dissociation leads to mostly parallel dislocation character of the 

two partial and, hence, the dominating interaction of the partials is 

repelling.

Due to energy required to form the stacking fault inbetween the partials, 

an equilibrium dissociation width is achieved: 𝛾iSF, 𝛾iSF =
𝑚𝐽

𝑚2.

The stacking fault spans along the dislocation line with the length 𝐿 and 

across the dissociation width 𝑥. The total energy of the intrsinsic

stacking fault is 𝑊iSF = 𝐿 𝑥 𝛾iSF. Specific to the dislocation length:
𝑊iSF

𝐿
= 𝑥 𝛾iSF

The interaction force between the partials equilibrates this attracting 

contribution:
𝐹iSF
𝐿

= 𝛾iSF
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Shockley Partial Dislocations

Plasticity

Screw components interact with 
𝐹𝑥

𝐿
𝑦 = 0 = ±

𝐺∙𝑏2

2𝜋

1

𝑥
. Edge components 

with 
𝐹𝑥

𝐿
𝑦 = 0 = ±

𝐺∙𝑏2

2𝜋∙ 1−ν

1

𝑥
.

For mixed character, the following equation for the interaction force 
within the slip plane can be obtained:

𝐹dis
𝐿

=
𝐺

2𝜋 𝑥
𝒃𝟏 ∙ 𝒔 𝒃𝟐 ∙ 𝒔 +

1

1 − ν
𝒃𝟏 × 𝒔 ∙ 𝒃𝟐 × 𝒔

The equilibrium dissociation with is then:

𝑥0 =
𝐺

2𝜋 𝛾iSF
𝒃𝟏 ∙ 𝒔 𝒃𝟐 ∙ 𝒔 +

1

1 − ν
𝒃𝟏 × 𝒔 ∙ 𝒃𝟐 × 𝒔

The measurement of equilibrium dissociation width provides direct 
evidence for the magnitude of the intrinsic stacking fault energy.

At medium to low stacking fault energies, the dissociation widths are 
few nanometers only. Only „weak beam dark field“ is possible for 
imaging.
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Shockley Partial Dislocations

Plasticity

N. Okamoto et al.: “Size effect, critical resolved shear stress, stacking fault energy, and solid solution 

strengthening in the CrMnFeCoNi high-entropy alloy” in Scientific Reports 6 (2016) 35863

Imaging of a dissociated 

dislocation in CoCrFeMnNi (A1, 

Cu structure type) by means of 

„weak beam dark field“. The 

dissociation width depends on 

the character of the full 

dislocation.

Shockley partial 1

Shockley partial 2
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Dissociated Dislocations

Plasticity

Under external force, the pair of Shockley partials behaves like an 

undissociated dislocation!

The planar dissociation within the slip plane leads to very low 

Peierls barriers since there are no major displacement components 

outside the slip plane.

In contrast to reports in literature, the pair of Shockley partials does 

only change width under external but never dissociates or contracts 

completely. The latter case can only be achieved when considering 

relativistic corrections of the interaction force under certain 

circumstances.
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Intrinsic Stacking Fault Energy 𝛾iSF

Plasticity

The stacking fault energy is a key property not only affecting 

deformation behavior but also recovery and recrystallization.

Note the relation to the twin boundary energy given in Ch. 3d.

G. Gottstein: “Materialwissenschaft und Werkstofftechnik: Physikalische Grundlagen”, Berlin, Heidelberg: Springer Vieweg, Springer-Verlag (2014)

J. Freudenberger et al.: “Studies on recrystallization of single-phase copper alloys by resistivity measurements“, Acta Materialia 58 (2010) 2324-2329

element
𝛾iSF /

mJ

m2

Ag 20 … 30

Cu 40 … 60

Ni ~ 150

Al 180 … 200

in Cu
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Intrinsic Stacking Fault Energy 𝛾iSF

The dissociation width controlled by is important when considering 

cross slip.

Please see following results:

Cu („medium“ stacking fault energy):

𝐺 ≈ 50 GPa, 𝑏 ≈ 2.5 Å, 𝛾𝑖𝑆𝐹 ≈ 50
mJ
m2: 𝑥0 ≈ 10 nm

Al („high“ stacking fault energy):

𝐺 ≈ 25 GPa, 𝑏 ≈ 2.9 Å, 𝛾𝑖𝑆𝐹 ≈ 190
mJ
m2: 𝑥0 ≈ 1.8 nm

Plasticity
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Attention!

Plasticity

As mentioned for the Thompson tetrahedron, there is unambiguous-

ness if the slip process is not defined. Exchange of leading and trailing 

partials does not give the same result: AC = Aδ + δC or AC = δC + Aδ!

A
C
B
A
C
A
C
B
A
C
B
A

C
B
A
C
B
A
C
B
A
C
B
A

C
B
A
C
B
A
C
B
A
C
B
A

Aδ δC

A plane

B plane

C plane
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Attention!

Plasticity

As mentioned for the Thompson tetrahedron, there is unambiguous-

ness if the slip process is not defined. Exchange of leading and trailing 

partials does not give the same result: AC = Aδ + δC or AC = δC + Aδ!

AδδC

B
A
C
B
A
A
C
B
A
C
B
A

C
B
A
C
B
A
C
B
A
C
B
A

C
B
A
C
B
A
C
B
A
C
B
A

A plane

B plane

C plane
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Attention!

Plasticity

…ABCAABCA… is not closed packed and, therefore, unstable at an 

tremendous energy! It will always dissociate into an extrinsic stacking fault 

by nucleation of an anti-parallel pair of Shockley partials:

A plane

B plane

C plane

𝐶
𝐵
𝐴
𝐶
𝐵
𝐴
𝐶
𝐵
𝐴
𝐶
𝐵
𝐴

𝐶
𝐵
𝐴
𝐶
𝐵
𝐴
𝐶
𝐵
𝐴
𝐶
𝐵
𝐴

Aδ δC

Bδ δB
= Bδ + Aδ

δB + δC =

𝐵
𝐴
𝐶
𝐵
𝐶
𝐴
𝐶
𝐵
𝐴
𝐶
𝐵
𝐴
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Attention!

Plasticity

The extrinsic stacking fault is smallest possible twin lath:

𝐵
𝐴
𝐶
𝐵
𝐶
𝐴
𝐶
𝐵
𝐴
𝐶
𝐵
𝐴

A-Ebene

B-Ebene

C-Ebene

twin

boundaries
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Generalized Stacking Fault Energy

With the rise of computational methods, the concept of generalized 

stacking fault energy became available. From what we have seen in the 

previous slides, we know: 

Plasticity

A plane

B plane

C plane

𝛾

displacement

A full dislocation with a Burgers vector 𝒃 =
1

2
011 (AC) 

does not change the stacking sequence of the 𝒏 = 1ത11
(ABC).

The situations before and after displacement have no 

excess energy (ground state: closed packed with perfect 

stacking sequence).
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Generalized Stacking Fault Energy

With the rise of computational methods, the concept of generalized 

stacking fault energy became available:

Plasticity

𝛾

displacement

By calculation methods (e.g. MD), the 

energy landscape between these bounding 

states can be tracked during slip of the 

upper half crystal against the lower. The 

packing factor slightly decreases. This 

causes an energy maximum between the 

states.

Energy barrier to 

achieve the slip is 

accessible.
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Generalized Stacking Fault Energy

With the rise of computational methods, the concept of generalized 

stacking fault energy became available. From what we have seen in the 

previous slides, we know: 

Plasticity

𝛾

displacement

By the dissociation of the full dislocation, an intrinsic 

stacking fault is formed. The intrinsic fault has an higher 

higher energy 𝛾iSF than the ground state. Nevertheless, 

it’s still closed packed with maximum coordination (local 

hcp structure). Therefore, the energy is rather low in 

comparison to any other, arbitrary situation.

𝛾iSF
leading partial

trailing partial
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Generalized Stacking Fault Energy

With the rise of computational methods, the concept of generalized 

stacking fault energy became available. From what we have seen in the 

previous slides, we know: 

Plasticity

𝛾

displacement

𝛾iSF
leading partial

trailing partial

energy per atom

A. Kauffmann: „Gefügeverfeinerung durch 

mechanische Zwillingsbildung in Kupfer  und 

Kupfermischkristalllegierungen“, Diss. TU 

Dresden (2014)
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Generalized Stacking Fault Energy

With the rise of computational methods, the concept of generalized 

stacking fault energy became available:

Plasticity

𝛾

displacement

𝛾iSF

Again the transition states can be computed. 

Since the atoms have to be moved across a 

saddle point in interatomic distance, there is 

again a maximum separating the states. Since 

the intrinsic stacking fault has a local 

minimum in energy, it is metastable!

leading partial

trailing partial
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Generalized Stacking Fault Energy

With the rise of computational methods, the concept of generalized 

stacking fault energy became available:

Plasticity

𝛾

displacement

𝛾iSF

The energy barrier between the states is often 

called “unstable stacking fault energy”.

𝛾uSF
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Generalized Stacking Fault Energy

With the rise of computational methods, the concept of generalized 

stacking fault energy became available:

Plasticity

𝛾

displacement

𝛾iSF

Three Shockley partials of the same Burgers 

vector also lead to a full lattice translation.

𝛾uSF
Tremendous 

energy of the 

simple cubic AA 

stacking!

1. partial 2. partial 3. partial



35

Generalized Stacking Fault Energy

With the rise of computational methods, the concept of generalized 

stacking fault energy became available:

Plasticity

𝛾

displacement

𝛾iSF

The operation of the same partial dislocation on 

a consecutive slip plane leads to the smallest 

possible twin lath: the extrinsic stacking fault 

𝛾eSF ≈ 𝛾iSF. Again an energy barrier has to be 

overcome: 𝛾uTF.

𝛾uSF

1. twinning partial 2. twinning partial

𝛾uTF

𝛾eSF
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Generalized Stacking Fault Energy

With the rise of computational methods, the concept of generalized 

stacking fault energy became available:

Plasticity

𝛾

displacement1. twinning partial 2. twinning partial

𝛾𝑢𝑇𝐹

𝛾𝑒𝑆𝐹

energy per atom

A. Kauffmann: „Gefügeverfeinerung durch 

mechanische Zwillingsbildung in Kupfer  und 

Kupfermischkristalllegierungen“, Diss. TU 

Dresden (2014)
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Frank Partial Dislocations

Another important type of dissociation is achieved by the formation 

Frank partials:

AC = Aα + αC
1

2
011 =

1

3
111 +

1

6
ത211

Note that the Burgers vector of Frank partial dislocations exactly 

bridges the distance between the slip planes of the octahedral slip 

system (capital Latin letter with matching Greek lowercase on the 

opposite tetrahedron face). Therefore, they play an important role in 

condensation of vacancies and deformation twinning by source 

mechanisms.

Frank partial dislocations are considered sessile!

Pure Frank dislocations are formed by condensation of vacancies to 

negative prismatic loops.

Plasticity
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Frank Partial Dislocations

Plasticity

S
ta

c
k
in

g

s
e

q
u

e
n

c
e

o
f
1
ത11

:

1ത11

1

3
1ത11

C
B
A
C
B
A
C
B
A
C
B
A

C
B
A
C
B
A
C
B
A
C
B
A

C
B
A
C
B
A
B
A
C
B
A

Condensation of vacancies leads to a prismatic Frank loop with 

enclosed intrinsic stacking fault.

Aα Aα
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Frank Partial Dislocations

Plasticity

Typical fringe contrast by the stacking fault in a prismatic loop in quenched AlMg3. After recovery, the 

stacking fault is gone and a full dislocation loop has formed. The segments are parallel to 1ത10 within 

111 .

Further analysis actually shows that Frank loops are not composed of single Frank partial dislocations 

but from typically two or three partials very close to each other (either coplanar or metastable stacked).

D. Hull, D. J. Bacon: “Introduction to Dislocations”, Amsterdam, etc.: Elsevier (2011)
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Cross Slip

Plasticity

Friedel-Escaig: the partials first have to constrict in the intersection of the slip 

planes to a full screw dislocation in order to change the slip plane. This is 

considered as the major cross slip mechanism in A1 metals and alloys. The 

constriction can be assisted by thermal fluctuations and the process is hence 

thermally activated.

primary

slip plane

secondary slip 

plane
constriction

re-dissociation after 

change of the slip plane

adopted from W. Püschl: “Models for dislocation cross-slip

in close-packed crystal structures: a critical review” in Progress in Materials Science 47 (2002) 415–461
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Cross Slip

Plasticity

Friedel-Escaig : the partials first have to constrict in the intersection of the slip 

planes to a full screw dislocation in order to change the slip plane. This is 

considered as the major cross slip mechanism in A1 metals and alloys. The 

constriction can be assisted by thermal fluctuations and the process is hence 

thermally activated.

ABC = (1ത11) AC =
1

2
011

δC =
1

6
ത112

Aδ =
1

6
121

ADC = (11ത1)

Aβ =
1

6
112

βC =
1

6
ത121
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Cross Slip

Plasticity

Fleischer: the stacking fault changes the slip plane at once! Due to the different 

Burgers vector of the leading partial in the secondary slip plane, there must be a 

new segment in the intersection of the slip planes mediating the difference. The 

segment has 
1

6
01ത1 on (100) and is sessile! The process is maybe active at high 

stresses and high temperatures.

ABC = (1ത11) AC =
1

2
011

δC =
1

6
ത112

Aδ =
1

6
121

ADC = (11ത1)

Aβ =
1

6
112

Aδ − Aβ = βδ =
1

6
01ത1

(slip plane: 01ത1 × 011 = (100))

obtuse angle:

adopted from W. Püschl: “Models for dislocation cross-slip

in close-packed crystal structures: a critical review” in Progress in Materials Science 47 (2002) 415–461
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Cross Slip

Plasticity

Fleischer: the stacking fault changes the slip plane at once! Due to the different 

Burgers vector of the leading partial in the secondary slip plane, there must be a 

new segment in the intersection of the slip planes mediating the difference. The 

segment has 
1

6
01ത1 on (100) and is sessile! The process is maybe active at high 

stresses and high temperatures.

acute angle:

ABC = (1ത11) AC =
1

2
011

δC =
1

6
ത112

Aδ =
1

6
121

ADC = (11ത1)

βC =
1

6
ത121

Aδ − βC =
1

3
100

(slip plane: 100 × 011 = (0ത11))

1

6
01ത1 <

1

3
100

Bypass stress is high because the spacing of 

the partials is low!

adopted from W. Püschl: “Models for dislocation cross-slip

in close-packed crystal structures: a critical review” in Progress in Materials Science 47 (2002) 415–461
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Cross Slip

Plasticity

Cross slip is a vital contribution to static and dynamic recovery. It 

allows dislocations to leave the slip plane and annihilate with 

dislocations of same sign or form a metastable pattern with 

dislocations of same sign.

Both fundamental processes are assisted by thermal fluctuation. 

In order suppress cross slip, temperature of deformation can be 

decreased. Hence, (dynamic) recovery can be reduced by this as well 

and higher stress levels are achieved by dislocation strengthening.

Increasing dissociation width significantly decreases probability 

for cross slip. This can be achieved by lowering stacking fault energy.
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Dislocation Reactions

Plasticity

In Ch. 4d, we introduced dislocation bypass and dislocation 

intersection as important contributions to dislocation strengthening 

and work-hardening.

In real crystal structures, there are additional interaction possibilities 

due to the discrete nature of the crystal (finite number of slip 

system and slip planes with various slip directions), namely the 

reaction of parallel dislocations on inclined slip planes.

The probability for such reactions is again assessed on the basis of 

the introduced concepts:

Line energy: in case the Burgers vector of the reaction is significantly 

shorter than the Burgers vector of the original dislocations, the reaction 

becomes energetically feasible.

Interaction stress: in case the interaction stress of the initial dislocations 

is not to high for the applied stress, the reaction of the dislocation 

segments is possible.
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Dislocation Reactions

Plasticity

Dislocation reactions on the same slip plane:

Annihilation:

Slip planes of the two dislocations: 𝒏𝟏 = 𝒏𝟐 = 111

Burgers vectors of the initial dislocations: 𝒃𝟏 = −𝒃𝟐 =
1

2
ത110

Burgers vector of the reaction product: no net Burgers vector

Recombination to the third Burgers vector within the slip plane:

Slip planes of the two dislocations: 𝒏𝟏 = 𝒏𝟐 = 111

Burgers vectors of the initial dislocations:

𝒃𝟏 =
1

2
ത110 und 𝒃𝟐 =

1

2
10ത1

Burgers vector of the reaction product: 
1

2
ത110 +

1

2
10ത1 =

1

2
01ത1

There are two initial full dislocations which recombine to a single full 

dislocation!

Any other reaction leads to a much longer Burgers vector of the 

reaction product and is, therefore, not feasible.
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Dislocation Reactions

Plasticity

Dislocation reactions on different slip planes:

Recombination to another dislocation of the octahedral slip systems:

Slip planes of the two dislocations: 𝒏𝟏 = 111 and 𝒏𝟐 = 1ത11

Burgers vectors of the initial dislocations:

𝒃𝟏 =
1

2
ത110 and 𝒃𝟐 =

1

2
10ത1

Burgers vector of the reaction product: 𝒃 =
1

2
ത110 +

1

2
10ത1 =

1

2
01ത1

There are two initial full dislocations which recombine to a single full 

dislocation!

Dislocation line of the reaction product: 𝒔 = 111 × 1ത11 = 10ത1

Slip plane of the reaction product: 𝒏 = 𝒔 × 𝒃 = 10ത1 ×
1

2
01ത1 = 111

The new dislocation is glissile since it is a dislocation on an octahedral slip 

system 111
1

2
01ത1 .
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Dislocation Reactions

Plasticity

∎ and ∎ are the initial dislocations

∎ is the reaction product
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Dislocation Reactions

Plasticity

Dislocation reactions on different slip planes:

Lomer-Lock:

Slip planes of the two dislocations: 𝒏𝟏 = 111 and 𝒏𝟐 = ത111

Burgers vectors of the initial dislocations:

𝒃𝟏 =
1

2
ത110 and 𝒃𝟐 =

1

2
101

Burgers vector of the reaction product: 𝒃 =
1

2
ത110 +

1

2
101 =

1

2
011

There are two initial full dislocations which recombine to a single full 

dislocation!

Dislocation line of the reaction product: 𝒔 = 111 × ത111 = 0ത11

Slip plane of the reaction product: 𝒏 = 𝒔 × 𝒃 = 0ത11 ×
1

2
011 = 100

The 100 do not belong to the octahedral slip systems. The reaction product 

is sessile: lock. In literature, it‘s usually referred to as „stair rod“.

Any other reaction leads to a much longer Burgers vector of the 

reaction product and is, therefore, not feasible.
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Dislocation Reactions

Plasticity

∎ and ∎ are the initial dislocations

∎ is the reaction product (the slip plane is not shown)
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Dislocation Reactions

Plasticity

∎ and ∎ are the initial dislocations

∎ is the reaction product

The sessile segment acts as obstacle for the dislocation motion on the two 

slip planes. In case of an operating dislocation source on either of the slip 

planes, pile-ups are created. The glissile segments can form glide sources.

70.53°

View from the side.
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Dislocation Reactions

Plasticity

Dislocation reactions on different slip planes, but considering the 

dissociation of the dislocations:

Lomer-Cottrell-Lock:

Slip planes of the two dislocations: 𝒏𝟏 = 111 und 𝒏𝟐 = ത111

Burgers vectors of the initial dislocations:

𝒃𝟏 =
1

6
ത12ത1 +

1

6
ത211 and 𝒃𝟐 =

1

6
1ത12 +

1

6
211

Burgers vector of the reaction product 𝒃 =
1

6
ത12ത1 +

1

6
1ത12 =

1

6
011

Two Shockley partial dislocations react to a single Lomer-Cottrell lock 

with much shorter Burgers vector!

Dislocation line of the reaction product: 𝒔 = 111 × ത111 = 0ത11

Slip plane of the reaction product: 𝒏 = 𝒔 × 𝒃 = 0ത11 ×
1

2
011 = 100

The 100 do not belong to the octahedral slip systems. The reaction product 

is sessile: lock. In literature, it‘s usually referred to as „stair rod“.

Any other reaction leads to a much longer Burgers vector of the 

reaction product and is, therefore, not feasible.
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Dislocation Reactions

Plasticity

∎ and ∎ are the initial dislocations

∎ is the reaction product (the slip plane is not shown)
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Dislocation Reactions

Plasticity

∎ and ∎ are the initial dislocations

∎ is the reaction product

The sessile segment acts as obstacle for the dislocation motion on the two 

slip planes. In case of an operating dislocation source on either of the slip 

planes, pile-ups are created. The glissile segments can form glide sources.

70.53°

View from the side.
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Summary

Plasticity

In A1 metals and alloys, closed packed planes and closed packed 

directions act as slip systems: octahedral slip systems.

Depending on the intrinsic stacking fault energy, dislocations are 

dissociated. The dissociation restricts the cross slip probability of 

screw dislocations and, therefore, the ability to dynamically recover.

The reaction of dislocations on different slip planes can lead to the 

formation of locks. Locks cause pile-up of dislocations and 

formation of glide sources. Hence, locks play a vital role in work-

hardening of A1 metals and alloys.


