
Numerical Implementation and Application of a Three-Dimensional Continuum Theory of 
Curved Dislocations  
 
S. Sandfeld, T. Hochrainer, P. Gumbsch 
 
In recent years, the growing demand for physically motivated continuum theories of plasticity 
has led to a renewed effort to formulate continuum theories of dislocation kinematics and 
dynamics.  
 
In the late 1950s, Kröner, Nye, Bilby and Kondo independently formulated the classical 
continuum theory of dislocations based upon the definition of a dislocation density tensor 
('Kröner-Nye tensor'). The authors were well aware that this tensor, if used as a measure of the 
average dislocation state of a crystal, leads to a description of plastic deformation processes that 
is intrinsically incomplete. In particular, the Kröner-Nye tensor is only a measure for the 
geometrically necessary dislocations while all information about statistically stored dislocations 
is lost at larger scales. As a consequence, any spatially homogeneous shear deformation can in 
principle not be reflected by the dynamic evolution of the Kröner-Nye tensor or similar 
measures. This renders the classical dislocation density measure highly problematic as a 
foundation for a continuum theory of plasticity. 
 
Many shortcomings of the classical theory were recently remedied by the introduction of an 
extended continuum theory of curved dislocations developed at IZBS in cooperation with M. 
Zaiser, University of Edinburgh (cf. Dissertation Hochrainer, 2006). This theory utilizes a 
generalisation of the Kröner-Nye tensor, the so-called dislocation density tensor of second order. 
Within this tensor all dislocations are considered as line-like objects. This was achieved by the 
so-called 'lift' of curves: a map of the spatial curve into a higher-order configuration space. When 
considering only one slip system, the configuration space consists of the spatial slip plane x-y 
and the dislocation line orientation φ. In this configuration space an extended dislocation density 
tensor αII is defined as a differential form. This tensor is defined by the scalar dislocation density 
ρ giving the density of dislocations with orientation φ and the mean dislocation curvature k: 
 

( )IIα = ρ cos dy d sin dx d +kdx dy bϕ ϕ ϕ ϕ∧ − ∧ ∧ ⊗  
 
The temporal change of αII is governed by a conservation law, which can be converted into 
evolution equations for the scalar dislocation density ρ and for the mean curvature k. 
 
In this project we study the extended continuum theory for the quasi-two-dimensional case of a 
single glide system. To numerically validate the theory we show that the continuum evolution 
equation of this new dislocation density measure can handle the kinematic evolution of quasi-
discrete dislocation loops. Furthermore, the case of homogeneous loop distribution can be easily 
treated numerically within this theory. This is a simple case where theories which rely on the 
Kröner-Nye tensor, normally fail. 
 
 
 
 
 



 
 
Fig. 1: Sketch of a distribution of dislocation loops in a constrained slip channel. We consider a 
one-dimensional special case where the movement of dislocations is hindered by impenetrable 
walls at the left and the right side of the geometry, while assuming an infinitely long and 
homogeneous distribution in y-direction. Close to the walls line orientations parallel to the walls 
dominate the distribution 
 
The numerical application aims at predicting the dislocation evolution and mechanical behaviour 
of realistic systems like a conductor line used in a micro chip. Towards this goal we modelled 
impenetrable boundary conditions with the extended continuum theory. This was achieved by 
prescribing a velocity function and evolving a curvature field k as well as a density field ρ, both 
of which are defined in the configuration space (Fig. 1).  

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 2: Evolution of average dislocation curvature k (left) and dislocation density (right) in a 
constrained channel geometry. The horizontal axis shows the channel width, the vertical axis is 
the dislocation line orientation φ, the y axis is omitted since k and ρ are constant in this direction. 
Top row: Initial loop curvature (left) and density (right) at time t0.=0. The curvature is mostly 
constant, which implies that the initial system is a distribution of circular loops. The markings '1' 
and '2' represent the density corresponding to a line orientation parallel to the left and right 
interface, respectively. Bottom row: Evolved curvature and density field at time t1>t0. The 
markings '3a' and '3b' denote the point where dislocations have zero curvature parallel to the 
channel wall (i.e. corresponds to a straight line segment) and a high density gets disposed at the 
interface. The area '4' is the intermediate region where the deposited line segments bow out (with 
a large curvature) back into circular shape (=constant curvature in the field area). 


