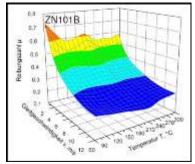

Arbeitsgruppe *Mikrotribologie* am IAM-CMS und μTC

Beanspruchungsspezifische Wirkflächenoptimierung


⇒ Surface engineering

Entwicklung von Prozessen zur lasergestützten
Texturierung bzw. Modifizierung
von tribologischen Wirkflächen
(Metalle, Keramiken, PVD-Dünnschichten)

⇒ Tribologie

- grundlegende Charakterisierung von Tribopaarungen unter gleitender, wälzender und furchender Beanspruchung
- analytische Modellbildung zur Beschreibung des tribologischen Verhaltens in Abhängigkeit von Werkstoff-, Oberflächen-, Belastungs-, Umgebungsparametern

Labortribometer "Plint TE 92 HS"

Reibungs- und Verschleißprüfung im einsinnigen Gleitkontakt

Grundkörper

• Scheibe Ø = 50...70 mm, h = 8 mm

Gegenkörper

- Kugel Ø = 10 mm
- Stift Ø = 16 mm (ballige Stirnfläche)

Andere Prüfkörpergeometrien nach Absprache möglich!

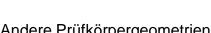
digitale Messwerterfassung


- Normal- und Reibungskraft
- Drehzahl (Gleitgeschwindigkeit)
- Umdrehungsanzahl (Gleitweg)
- linearer Verschleißbetrag
- Temperatur
- relative Luftfeuchte

Normalkraft	501000 N
Drehzahl	10010.000 min ⁻¹
Reibradius r _R	≤ 30 mm
Gleitgeschwindigkeit	20 m/s für r _R = 20 mm
max. zul. Reibmoment	1,6 Nm @ 10.000 U/min
Temperatur	RT 400°C
Umgebungsmedien	Luft mit 1080% r.F. flüssige Medien

Labortribometer "CETR UMT3"

Reibungs- und Verschleißprüfung im einsinnigen Gleitkontakt


Grundkörper

Scheibe $\emptyset = 50...70$ mm, h = 8 mm

Gegenkörper

- Kugel $\emptyset = 10 \text{ mm}$
- Stift $\emptyset = 16 \text{ mm}$ (ballige Stirnfläche)

Andere Prüfkörpergeometrien nach Absprache möglich!

digitale Messwerterfassung

- Normal- und Reibungskraft
- Drehzahl (Gleitgeschwindigkeit)
- Umdrehungsanzahl (Gleitweg)
- linearer Verschleißbetrag
- Temperatur
- relative Luftfeuchte

Normalkraft	560 N
Drehzahl	05.000 min ⁻¹
Reibradius r _R	<u><</u> 30 mm
Spurradius	≤ 30 mm
Gleitgeschwindigkeit	10 m/s (r _R = 20 mm)
Temperatur	RT150°C
Umgebungsmedien	Luft mit 1080% r.F. flüssige Medien

Labortribometer "insitu"

Reibungsprüfung im einsinnigen Gleitkontakt

Möglichkeit zur insitu-Beobachtung der Kontaktzone

Grundkörper

Saphirscheibe

 $\emptyset = 50 \text{ mm}, h = 5 \text{ mm}$

Gegenkörper

Kugel Ø 1,6...10 mm

Andere Prüfkörpergeometrien nach Absprache möglich!

Kontaktzone →

digitale Messwerterfassung

- Normal- und Reibungskraft
- Drehzahl (Gleitgeschwindigkeit)
- Umdrehungsanzahl (Gleitweg)
- Schmierfilmdicke
- Temperatur von Grund-, Gegenkörper und flüssigem Medium
- relative Luftfeuchte

Normalkraft	110 N
Geschwindigkeit	1300 mm/s
Reibradius	18 mm
Temperatur	RT
Umgebungsmedium	Luft mit 1080% r.F. flüssige Medien

Kontakt: Dr.-Ing. Johannes Schneider // Dr.-Ing. Christian Greiner
Institut für Angewandte Materialien -- Computational Materials Science (IAM-CMS)

Labortribometer "CSEM"

Reibungs- und Verschleißprüfung im einsinnigen Gleitkontakt

Grundkörper

• Scheibe Ø = 45...70 mm, h = 2...6 mm

Gegenkörper

Kugel Ø = 1,6...10 mm

Andere Prüfkörpergeometrien nach Absprache möglich!

digitale Messwerterfassung

- Normal- und Reibungskraft
- Drehzahl (Gleitgeschwindigkeit)
- Umdrehungsanzahl (Gleitweg)
- linearer Verschleißbetrag
- relative Luftfeuchte
- · Temperatur des flüssigen Mediums

Kontakt: Dr.-Ing. Johannes Schneider // Dr.-Ing. Christian Greiner
Institut für Angewandte Materialien -- Computational Materials Science (IAM-CMS)

Labortribometer "Amsler"

Reibungs- und Verschleißprüfung

- im einsinnigen Gleitkontakt (Block/Ring)
- Wälzbeanspruchung (Ring/Ring)

Grundkörper

Ring Ø_i = 25,5 mm,
 Ø_a = 38 mm, b = 13 mm

Gegenkörper

- Ring Ø_i = 25,5 mm,
 Ø_a = 38 mm, b = 13 mm
- Block 13 x 16 x 5 mm³

Andere Prüfkörpergeometrien nach Absprache möglich!

digitale Messwerterfassung

- Normal- und Reibungskraft
- Drehzahl (Gleitgeschwindigkeit)
- Umdrehungsanzahl (Gleitweg)
- linearer Verschleißbetrag
- Temperatur
- relative Luftfeuchte

Normalkraft F _N	20200 bzw. 3002000 N
Drehzahl	195 bzw. 390 U/min
Gleitgeschwindigkeit v	0,39 bzw. 0,78 m/s
Schlupf	010%
Temperatur	RT
Umgebungsmedien	Luft mit 1080% r.F. flüssige Medien (Tropfschmierung)

Labortribometer "Optimol SRV"

Reibungs- und Verschleißprüfung im reversierenden Gleitkontakt

Grundkörper

- Scheibe $\emptyset = 25 \text{ mm}$, h = 8 mm
- Platte 16 x 25 x 8 mm³

Gegenkörper

- Kugel Ø = 10 ... 20 mm
- Ring $\emptyset_i = 25,5$ mm, $\emptyset_a = 38$ mm, b = 6...13 mm
- Zylinder Ø = 10 mm,
 b = 10...22 mm

Andere Prüfkörpergeometrien nach Absprache möglich!

digitale Messwerterfassung

- · Normal- und Reibungskraft
- linearer Verschleißbetrag
- Temperatur
- relative Luftfeuchte

Normalkraft F _N	20200 N
Frequenz f	10500 Hz, f = f(F _N , Δs)
Hublänge ∆s	0,12,5 mm, Δs = f(F _N , f)
Temperatur	RT 450°C
Umgebungsmedium	Luft mit 1080% r.F. flüssige Medien

Labortribometer "Langhub"

Reibungs- und Verschleißprüfung im reversierenden Gleitkontakt

Grundkörper

Platte 50 x 25 x 8 mm³

Gegenkörper

- Kugel Ø = 10 mm
- Ring $Ø_i = 25,5$ mm, $Ø_a = 38$ mm, b = 6...13 mm
- Zylinder Ø = 10 mm,
 b = 10...22 mm
- Stift Ø = 16 mm (ballige Stirnfläche)

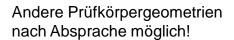
Andere Prüfkörpergeometrien nach Absprache möglich!

digitale Messwerterfassung

- · Normal- und Reibungskraft
- linearer Verschleißbetrag
- Temperatur
- relative Luftfeuchte

Normalkraft F _N	10250 N
Frequenz f	215 Hz, f = f(F _N , Δs)
Hublänge ∆s	520 mm, Δs = f(F _N , f)
Temperatur	RT 400°C
Umgebungsmedien	Luft mit 1080% r.F. flüssige Medien

Lineartribometer "Haftreibungstester"


Bestimmung des Übergangs vom Haften zum Gleiten

Grundkörper

Platte 50 x 20 x 8 mm³

Gegenkörper

- Rockwelldiamant (r = 200 µm)
- Kugel Ø = 10 mm
- Ring $\emptyset_i = 25,5 \text{ mm}$, $\emptyset_a = 38 \text{ mm}$, b = 13 mm

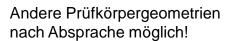
digitale Messwerterfassung

- Normal- und Tangentialkraft
- Gleitweg
- Temperatur
- relative Luftfeuchte

Normalkraft	10100 N
Abzugsgeschwindigkeit	8,3830 μm/s
Gleitweg	ca. 1000 µm
Federkonstante	140 N/mm
Resonanzfrequenz	46,5 Hz
Temperatur	RT400°C
Umgebungsmedium	Luft mit 1080% r.F. flüssige Medien

Kontakt: Dr.-Ing. Johannes Schneider // Dr.-Ing. Christian Greiner
Institut für Angewandte Materialien -- Computational Materials Science (IAM-CMS)

Lineartribometer "Scratchtester"


Reibungs- und Verschleißprüfung unter furchender Beanspruchung

Grundkörper

Platte 50 x 20 x 8 mm³

Gegenkörper

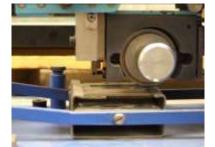
- Rockwelldiamant (r = 200 μm)
- Kugel Ø = 10 mm

digitale Messwerterfassung

- Normal- und Reibungskraft
- Gleitweg
- Schallemission
- Temperatur
- relative Luftfeuchte

Normalkraft	≤ 200 N
Gleitgeschwindigkeit	050 mm/min
Gleitweg	50 mm
Temperatur	RT
Umgebungsmedium	Luft mit 1080% r.F. flüssige Medien

Abrasivtester "Erichsen"


Verschleißprüfung unter furchender Beanspruchung

Grundkörper

Platte 50 x 25 x 8 mm³

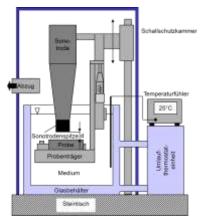
Messgrößen

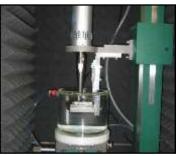
 linearer, volumetrischer oder gravimetrischer Verschleißbetrag

Gegenkörper

 Reibrad Ø = 50 mm, b = 4 mm beklebt mit Schleifpapier (SiC, Korund, Flint) unterschiedlicher Körnung

Andere Prüfkörpergeometrien nach Absprache möglich!


Normalkraft F _N	110 N
Frequenz	400 Doppelhübe pro Reibrad
Zyklen	400 Zyklen pro Reibrad
Hublänge	25 mm
Temperatur	RT
Umgebungsmedium	Luft mit 1080% r.F.


Kontakt: Dr.-Ing. Johannes Schneider // Dr.-Ing. Christian Greiner
Institut für Angewandte Materialien -- Computational Materials Science (IAM-CMS)

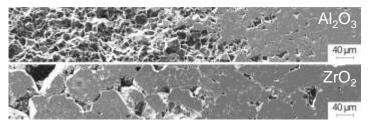
Kavitationsprüfstand

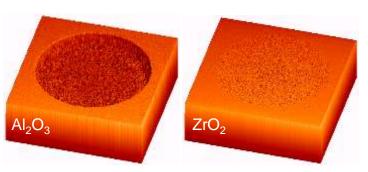
Kavitationsprüfung nach ASTM G32-92

• Frequenz f $20 \pm 0.5 \text{ kHz}$

Amplitude A
 25 μm

Abstand_{Probe-Sonotrode} 500 μm


Medientemperatur T 25 ± 2 °C

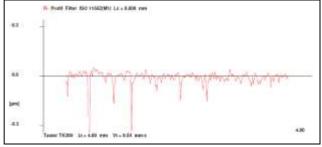

• Sonotrode Ø 16 mm

Probengeometrie

15 x 15 x 5 mm³

Andere Prüfkörpergeometrien nach Absprache möglich!

Keramische Oberflächen nach 6-stündiger Beanspruchung in destilliertem Wasser



Oberflächentastschnittgerät "Hommel T8000"

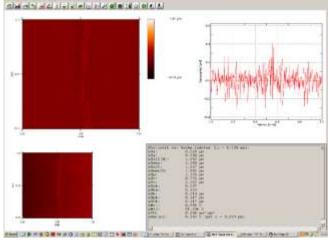
taktile Erfassung von Rauheit, Kontur und Topografie

digitale Messwerterfassung

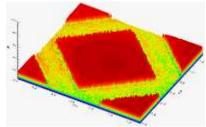
- Rauheitskennwerte
- Kontur
- Topografie

Messbereich xy	100 x 100 mm ²
Auflösung xy	ca. 2 µm
Messbereich z	<u><</u> 300 μm
Auflösung z	ca. 50 nm
max. Flankenwinkel	ca. 30°

Kontakt: Dr.-Ing. Johannes Schneider // Dr.-Ing. Christian Greiner
Institut für Angewandte Materialien -- Computational Materials Science (IAM-CMS)



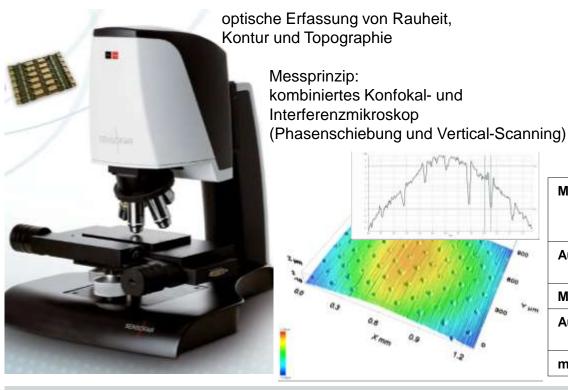
Oberflächentastschnittgerät "FRT Microprof"


optische Erfassung von Rauheit, Kontur und Topographie

Messprinzip: chromatischen Aberration von Weißlicht Sensor CWL-300

digitale Messwerterfassung

- Rauheitskennwerte
- Kontur
- Topografie


Messbereich xy	100 x 100 mm ²
Auflösung xy	ca. 2,5 µm
Messbereich z	≤ 300 µm
Auflösung z	ca. 50 nm
max. Flankenwinkel	ca. 30°

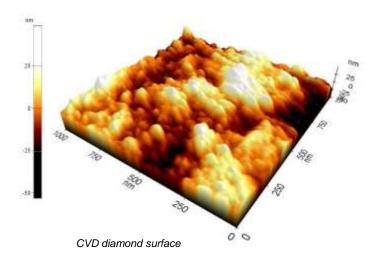
Kontakt: Dr.-Ing. Johannes Schneider // Dr.-Ing. Christian Greiner
Institut für Angewandte Materialien -- Computational Materials Science (IAM-CMS)

Oberflächentastschnittgerät "Sensofar PLµ neox"

digitale Messwerterfassung

- Rauheitskennwerte
- Kontur
- Topografie

Messbereich xy	254 x 190 µm² bis 1270 x 950 µm² Stitching möglich!
Auflösung xy	0,33 bis 1,66 µm je nach Objektiv
Messbereich z	≤ 200 μm
Auflösung z	1 bis 50 nm je nach Objektiv
max. Flankenwinkel	ca. 30°


Rasterkraftmiksrokop "Park XE7"

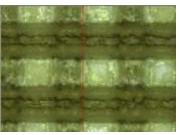
Rasterkraftmikroskop

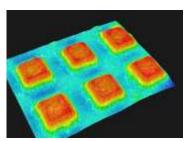
Messprinzip:

- true non-contact
- dynamic contact
- -phase imaging
- fd spectroscopy

Messbereich xy	50 x 50 μm²
Auflösung xy	0,33 bis 1,66 µm je nach Objektiv
Messbereich z	<u>≤</u> 12 μm

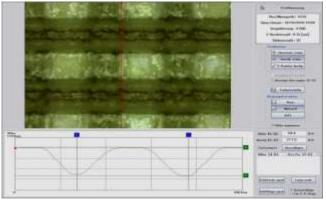
Kontakt: Dr.-Ing. Johannes Schneider // Dr.-Ing. Christian Greiner Institut für Angewandte Materialien -- Computational Materials Science (IAM-CMS)




Digitalmikroskop "Keyence VHX600D"

optisches Mikroskop

- digitale Bilderfassung
- Möglichkeit zur Erfassung von 3D-Daten

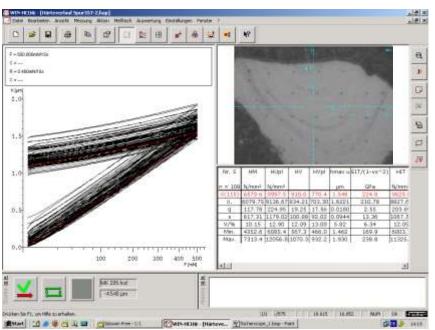


2D- und 3D-Bild einer laserstrukturierten Oberfläche

Vermessen einer laserstrukturierten Oberfläche

Bildgröße	1600 x 1200 Pixel
Bildrate	15 B/s @ 1600 x 1200 28 B/s @ 800 x 600
Vergrößerung	5x2500x

Kontakt: Dr.-Ing. Johannes Schneider # Dr.-Ing. Christian Greiner


Institut für Angewandte Materialien -- Computational Materials Science (IAM-CMS)

Universalhärteprüfer "Fischerskop HV100"

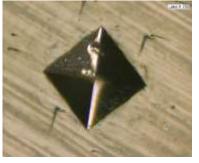
halbautomatische Bestimmung von Martenshärte und Elastizitätsmodul mittels registrierender Härteprüfung

digitale Messwerterfassung

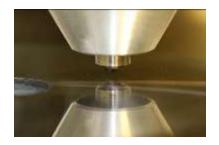
Last-Eindringkurve

minimale Last	0,4 mN
maximale Last	1000 mN
Eindringtiefe	max. 700 μm
Probenabmessung	max. 190 mm x 440 mm
Vergrößerung des Messmikroskops	50x / 200x / 500x

Kontakt: Dr.-Ing. Johannes Schneider // Dr.-Ing. Christian Greiner
Institut für Angewandte Materialien -- Computational Materials Science (IAM-CMS)



Mikrohärteprüfer "Shimadzu HMV-2000" und "Zwick 321"

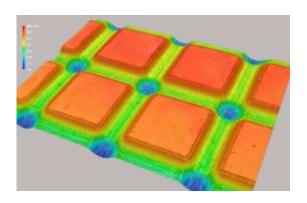

Bestimmung der Oberflächenhärte nach dem Vickersverfahren

Zwick 321


Laserbeschriftungsanlage "Acsys-Piranha II Multi F20"

Lasergestütze Oberflächentexturierung

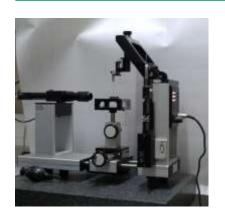
4-Achs-Positioniersystem


- x,y-Verfahrbereich 385 x 225 mm²
- z-Verfahrbereich 250 mm
- Drehachse (manuell schwenkbar)

Beschriftungsfeldgröße von 25 x 25 mm², 60 x 60 mm² oder 170 x 170 mm²

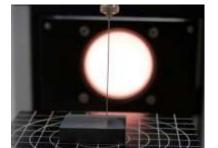
maximale Bauteilgröße ca. 300 x 300 x 200 mm³

Verarbeitung gängiger Vektorprofil-Dateien



Wellenlänge	1064 nm
Strahldurchmesser	< 40 μm
Pulsfolgefrequenz	2080 kHz
Laserpulslänge	ca. 100 ns
Lasergeschwindigkeit	503000 mm/s
Leistung	20 W

Kontaktwinkelmessgerät "dataphysics OCA 15 plus"

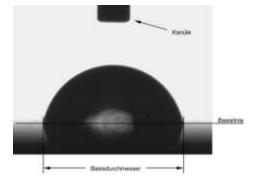


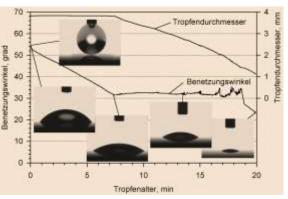
Bestimmung von

- Kontaktwinkel (statisch und dynamisch)
- Oberflächenenergie

Messmethoden

- Sessile und Captive Drop Methode
- Pendant Drop Methode




Probentisch

- Abmessung 100 x 100 mm
- Verfahrbereich 100 x 100 x 50 mm

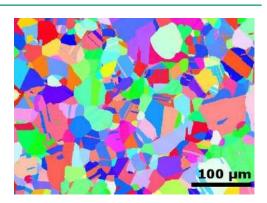
Probekörper

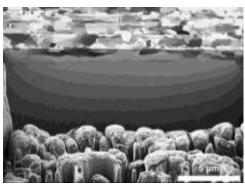
- max. Gewicht 15 kg
- max. Abmessung 220 x ∞ x 70 mm

Kontakt: Dr.-Ing. Johannes Schneider // Dr.-Ing. Christian Greiner

Institut für Angewandte Materialien -- Computational Materials Science (IAM-CMS)

FEI Helios Nanolab 650 Dual Beam Microscope




Kombination aus hochauflösendem

- Elektronenstrahl-Mikroskop
 - FESEM
 - STEM
 - Auflösung ≥ 0,8 nm
- Ionenstrahl-Mikroskop
 - FIB
 - Auflösung ≥ 2,5 nm

Analytik

- Energy-dispersive
 X-ray spectroscopy (EDS)
- Electron backscatter diffraction (EBSD)

