Water penetration – Its effect on the strength and toughness of silica glass

  • Autor:

    Wiederhorn, SM; Fett, T; Rizzi, G; Hoffmann, MJ; Guin, JP

  • Quelle:

    METALLURGICAL AND MATERIALS TRANSACTIONS A-PHYSICAL METALLURGY AND MATERIALS SCIENCE, 2013, Band 44A, Heft 3, S. 1164-1174, DOI: 10.1007/s11661-012-1333-z, published online 08 September 2012

Abstract

 

When a crack forms in silica glass, the surrounding environment flows into the crack opening, and water from the environment reacts with the glass to promote crack growth. A chemical reaction between water and the strained crack-tip bonds is commonly regarded as the cause of subcritical crack growth in glass. In silica glass, water can also have a secondary effect on crack growth. By penetrating into the glass, water generates a zone of swelling and, hence, creates a compression zone around the crack tip and on the newly formed fracture surfaces. This zone of compression acts as a fracture mechanics shield to the stresses at the crack tip, modifying both the strength and subcritical crack growth resistance of the glass. Water penetration is especially apparent in silica glass because of its low density and the fact that it contains no modifier ions. Using diffusion data from the literature, we show that the diffusion of water into silica glass can explain several significant experimental observations that have been reported on silica glass, including (1) the strengthening of silica glass by soaking the glass in water at elevated temperatures, (2) the observation of permanent crack face displacements near the crack tip of a silica specimen that had been soaked in water under load, and (3) the observation of high concentrations of water close to the fracture surfaces that had been formed in water. These effects are consistent with a model suggesting that crack growth in silica glass is modified by a physical swelling of the glass around the crack tip. An implication of water-induced swelling during fracture is that silica glass is more resistant to crack growth than it would be if swelling did not occur.