Home | english  | Impressum | Datenschutz | Sitemap | KIT








Design and Fabrication of Functional Surfaces with Controllable Wettability, Adhesion and Reflectivity

The ultimate goal of FabSurfWar is to set up a long-term international and inter-sector collaboration consortium through research and innovation staff exchanges between nine world-recognised institutions in the cutting-edge research area of micro/nano surface engineering with promising applications in scientific and engineering sectors. The synergistic methodologies achieved by FabsurfWAR will serve as the building blocks of the micro/nano functional surface design, fabrication, measurement, characterisation and scale up application, and thus enhance the leading position of the consortium for the scientific and technological progresses in functional surfaces and potential applications.

This project has received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement no. 644971.


Additive Manufacturing (AM) is a fast-growing sector with the ability to evoke a revolution in manufacturing due to its almost unlimited design freedom and its capability to produce personalised parts locally and with efficient material use. AM companies however still face technological challenges such as limited precision due to shrinkage and build-in stresses and limited process stability and robustness. Moreover often post-processing is needed due to the high roughness and remaining porosity. In addition qualified, trained personnel is hard to find. This ITN project will address both the technological and people challenges.

Registration Partner - 5.Worshop at KIT (Nov. 12th-16th 2018)

Registration External - 5. Workshop at KIT (Nov.12th 2018)



KNMF is a high-tech platform for structuring and characterising a multitude of functional materials at the micro- and nanoscale. The Karlsruhe Nano Micro Facility (KNMF) is focused on providing open and for public work free access to multimaterial state-of-the-art micro and nanotechnologies for users from industry and academia, either national or international. Annual deadlines for the submission of proposals are January 15 and June 30. Applications for urgent and commercial projects can be submitted at any time.


Logo: Deutsche Forschungsgemeinschaft (DFG) - zur Startseite


Advanced three-dimensional lab-on-a-chip architectures for integrated surface-enhanced Raman spectroscopy

Lab-on-a-chip surface-enhanced Raman spectroscopy (SERS) is a very promising method for sensitive biochemical detection of low-concentrated analyte in water. However, two issues should be addressed. First, low-cost fabrication of on-chip-integrated SERS nanostructures with high reproducibility in enhancement factor is still vacant. Second, an on-chip-integrated laser excitation source, especially a spectrally tunable laser source, is still missing for this application. This proposal suggests an interdisciplinary approach, combining micro-/nano-systems engineering and nanophotonics for surface-enhanced Raman spectroscopy applications. The main objective of the project is the technical realization of a Raman-on-chip optofluidic platform with integrated organic semiconductor lasers. Furthermore we aim at a fundamental understanding and an optimization of localized surface plasmon resonances (LSPR) for SERS applications using low-cost metal-organic hybrid nanostructure arrays.


Logo: Deutsche Forschungsgemeinschaft (DFG) - zur Startseite


Characterization of 3D architectures of lithium-ion micro-batteries fabricated by laser-assisted manufacturing

Das Projekt adressiert grundlegende und anwendungsorientierte wissenschaftliche Fragestellungen im Bereich Energiespeichermaterialien mit 3D-Elektrodenarchitektur. In das Projekt werden Modellierung und Simulation sowie Fertigung und Charakterisierung gleichermaßen eingebracht. Unsere Arbeit zielt auf die wissenschaftlichen Grundlagen von Prozessen, Materialien und Geräten ab, die für zukünftige Batterien benötigt werden. Das übergeordnete Ziel dieses Projektes ist es, sowohl experimentelle als auch theoretische Richtlinien für die Entwicklung von 3D Batterien mit hoher Energie- und Leistungsdichte zu liefern. Grundlegende Fragen zu Elektronen- und Li-Ionen-Transportmechanismen in 3D-Strukturen und Grenzflächen werden untersucht. Das Projekt kombiniert die präzise experimentelle Charakterisierung mit der theoretischen Simulation, um die Entwicklung von fortschrittlichen Li-Zellarchitekturen zu beschleunigen. Die aus dem Projekt entstehenden Ideen, Modelle und Methoden werden die Wettbewerbsfähigkeit deutlich verbessern, um Deutschland und China eine weltweit führende Rolle im Bereich der erneuerbaren Energien und Energiespeichersysteme zu sichern und diese auszubauen.