Microstructure – Fluid Dynamics

Die Forschung der Gruppe konzentriert sich auf die Grenzflächeninstabilität, die Benetzung und die Phasenübergänge in Legierungen und Polymerlösungen, in denen sowohl die Fluiddynamik als auch die Diffusion vorhanden und miteinander gekoppelt sind.

Ansprechpartner: Dr.-Ing. Fei Wang

BildIAM-CMS

Forschung

Die Forschungsaktivitäten der Gruppe von Dr.-Ing. Fei Wang fokussieren sich auf die mikrostrukturelle Entwicklung von Phasen in Verbindung mit einer fluiden Dynamik und der Phasentransformation in unvermischbaren Flüssigkeiten und nanoporösen Strukturen. Das Forschungsziel ist es, Eindrücke über die Kinetik mikrostruktureller Evolutionen und Muster, welche sich im Gleichgewicht oder Ungleichgewicht befinden, zu erhalten. Dabei bleibt die Herausforderung, theoretische Berechnungen mit numerischen Simulationen oder experimentellen Ergebnissen zu verbinden, da die Korrektheit der Simulation von den gegebenen thermodynamischen und kinetischen Daten abhängt. Anwendung findet die Forschung in der industriellen Produktion, wie beispielsweise beim Tintenstrahldrucker oder der Herstellung von Nanopartikeln.
Durch die Anwendung der Phasenfeldmethode konzentriert sich die Forschung der Gruppe auf den mikrostrukturellen Evolutionsprozess, bei dem sowohl die Fluiddynamik als auch die Diffusion vorhanden sind. Zwei unterschiedliche Phasenfeldansätze, nämlich Cahn-Hilliard- und Allen-Cahn-Modelle, die mit Navier-Stokes-Gleichungen gekoppelt sind, werden angewendet, um bestimmte physikalische Probleme zu modellieren. Die Gruppe arbeitet an den folgenden Forschungsschwerpunkten.

Benetzung

Es werden verschiedene Benetzungsphänomene wie reaktive Benetzung beim Löten, Trägheitsbenetzung auf strukturierten Strukturen und Benetzungsübergänge in Abhängigkeit von der Temperatur oder der Zusammensetzung berücksichtigt.

Bild IAM-CMS
Visualisierung einer Simulation zur Benetzung auf eienr strukturierten Oberfläche
Bild IAM-CMS
Grenzflächeninstabilität am Beispiel einer Tröpfchenkette am Wasserhahn (Foto und Simulation)

Grenzflächeninstabilität

In der Fluiddynamik besteht eine typische Grenzflächeninstabilität darin, dass das Wasser beim Öffnen eines Wasserhahns zu rinnen beginnt und in eine Tröpfchenkette zerfällt. Ähnlich kann ein dünner Flüssigkeitsfilm auch in Tröpfchen oder Flüssigkeitsringe zerfallen. Das Problem wird komplexer, wenn die flüssige Phase mit einer festen Phase in Kontakt steht, wobei der Benetzungsmechanismus berücksichtigt werden muss. Zu diesem Thema werden Grenzflächenentwicklungen und -instabilitäten untersucht, indem theoretische Modelle entwickelt und numerische Simulationen durchgeführt werden, die auf den Phasenfeldmethoden basieren.

Bildung poröser Strukturen aus Polymerlösungen

Poröse Strukturen können durch spinodale Zersetzung aus Polymerlösungen gebildet werden. Während des Strukturbildungsprozesses werden zwei Stufen angenommen: In der ersten Stufe wird die Lösung als flüssige Phase betrachtet, in der die Oberflächenspannung und der Phasenübergang die mikrostrukturelle Entwicklung dominieren. In der zweiten Stufe findet eine Gelierung statt, bei der die aus der Phasentrennung resultierenden Tröpfchen fest sind. Hierbei müssen viskoelastische Eigenschaften berücksichtigt werden. Für diesen Strukturbildungsprozess soll ein thermodynamisch konsistentes Phasenfeldmodell entwickelt werden.

Bild IAM-CMS
Simulation zum Strukturbildungsprozess einer porösen Struktur aus einer Polymerlösung
Bild IAM-CMS
Visualisierung einer Simulation zur Erstarrung

Erstarrung

Das Phasenfeldmodell wird so angepasst, dass der Phasenübergang beispielsweise beim Dendritenwachstum, der monotektischen Reaktion, der peritektischen Reaktion und der eutektischen Reaktion untersucht werden kann, wo Diffusion und Konvektion eine Rolle spielen.

Starrkörperbewegung

Im Gegensatz zu den Partikeln aus weicher Materie mit endlichen Verformungen im Bildungsprozess poröser Strukturen werden hier Starrkörperpartikel betrachtet, bei denen die Verformung Null ist. Zu diesem Thema wird derzeit ein Phasenfeldmodell entwickelt.

Bild IAM-CMS
Simulation zur Starrkörperbewegung in einem strömenden Fluid
Projektteam
Name Tätigkeit
Wissenschaftlicher Mitarbeiter
Wissenschaftliche Mitarbeiterin
Wissenschaftliche Mitarbeiterin
Wissenschaftliche Mitarbeiter
3 weitere Personen sind nur innerhalb des KIT sichtbar.

Publikationen


2024
Multi-component electro-hydro-thermodynamic model with phase-field method. I. Dielectric
Zhang, H.; Wang, F.; Nestler, B.
2024. Journal of Computational Physics, 505, Art.-Nr.: 112907. doi:10.1016/j.jcp.2024.112907
Brownian motion of droplets induced by thermal noise
Zhang, H.; Wang, F.; Ratke, L.; Nestler, B.
2024. Physical Review E, 109 (2), Art.-Nr.: 024208. doi:10.1103/PhysRevE.109.024208
Wetting Behavior of Inkjet-Printed Electronic Inks on Patterned Substrates
Arya, P.; Wu, Y.; Wang, F.; Wang, Z.; Cadilha Marques, G.; Levkin, P. A.; Nestler, B.; Aghassi-Hagmann, J.
2024. Langmuir. doi:10.1021/acs.langmuir.3c03297
2023
Effect of wall free energy formulation on the wetting phenomenon: Conservative Allen–Cahn model
Zhang, H.; Wu, Y.; Wang, F.; Nestler, B.
2023. The Journal of Chemical Physics, 159 (16). doi:10.1063/5.0168394
Phase-field investigation on the microstructural evolution of eutectic transformation and four-phase reaction in Mo-Si-Ti system
Cai, Y.; Wang, F.; Czerny, A.; Seifert, H. J.; Nestler, B.
2023. Acta Materialia, 258, 119178
A new technical pathway for extracting high accuracy surface deformation information in coal mining areas using UAV LiDAR data: An example from the Yushen mining area in western China
Yang, Q.; Tang, F.; Wang, F.; Tang, J.; Fan, Z.; Ma, T.; Su, Y.; Xue, J.
2023. Measurement: Journal of the International Measurement Confederation, 218, Art.Nr.: 113220. doi:10.1016/j.measurement.2023.113220
Wetting Effect on Patterned Substrates
Wang, F.; Wu, Y.; Nestler, B.
2023. Advanced Materials, 35 (25), Art.-Nr.: 2210745. doi:10.1002/adma.202210745
Digital twin of a droplet microarray platform: Evaporation behavior for multiple droplets on patterned chips for cell culture
Wu, Y.; Joaquin E. Urrutia Gomez; Zhang, H.; Wang, F.; Levkin, P. A.; Popova, A. A.; Nestler, B.
2023
Line tension of sessile droplets: Thermodynamic considerations
Zhang, H.; Wang, F.; Nestler, B.
2023. Physical review / B, 108 (5), Art.-Nr.: 054121. doi:10.1103/PhysRevE.108.054121
State-of-the-art review of porous polymer membrane formation characterization—How numerical and experimental approaches dovetail to drive innovation
Bohr, S. J.; Wang, F.; Metze, M.; Vukušić, J. L.; Sapalidis, A.; Ulbricht, M.; Nestler, B.; Barbe, S.
2023. Frontiers in Sustainability, 4, 1093911
State-of-the-art review of porous polymer membrane formation characterization—How numerical and experimental approaches dovetail to drive innovation
Bohr, S. J.; Wang, F.; Metze, M.; Vukušić, J. L.; Sapalidis, A.; Ulbricht, M.; Nestler, B.; Barbe, S.
2023. Frontiers in Sustainability, 4, Art.-Nr.: 1093911. doi:10.3389/frsus.2023.1093911
Automated high-throughput image processing as part of the screening platform for personalized oncology
Schilling, M. P.; El Khaled El Faraj, R.; Urrutia Gómez, J. E.; Sonnentag, S. J.; Wang, F.; Nestler, B.; Orian-Rousseau, V.; Popova, A. A.; Levkin, P. A.; Reischl, M.
2023. Scientific Reports, 13, Article no: 5107. doi:10.1038/s41598-023-32144-z
Nanoliter Scale Parallel Liquid–Liquid Extraction for High‐Throughput Purification on a Droplet Microarray
Wiedmann, J. J.; Demirdögen, Y. N.; Schmidt, S.; Kuzina, M. A.; Wu, Y.; Wang, F.; Nestler, B.; Hopf, C.; Levkin, P. A.
2023. Small, 19 (9), Art.Nr. 2204512. doi:10.1002/smll.202204512
2022
Phase-field simulation for the formation of porous microstructures due to phase separation in polymer solutions on substrates with different wettabilities
Farzaneh Kalourazi, S.; Wang, F.; Zhang, H.; Selzer, M.; Nestler, B.
2022. Journal of Physics: Condensed Matter, 34 (44), Art.-Nr.: 444003. doi:10.1088/1361-648X/ac8b4d
Capillary adsorption of droplets into a funnel-like structure
Wu, Y.; Wang, F.; Huang, W.; Selzer, M.; Nestler, B.
2022. Physical Review Fluids, 7 (5), Art.-Nr.: 054004. doi:10.1103/PhysRevFluids.7.054004
A Two-Dimensional Phase-Field Investigation on Unidirectionally Solidified Tip-Splitting Microstructures
Laxmipathy, V. P.; Wang, F.; Selzer, M.; Nestler, B.
2022. Metals, 12 (3), Art.-Nr.: 376. doi:10.3390/met12030376
Equilibrium droplet shapes on chemically patterned surfaces: theoretical calculation, phase-field simulation, and experiments
Wu, Y.; Kuzina, M.; Wang, F.; Reischl, M.; Selzer, M.; Nestler, B.; Levkin, P. A.
2022. Journal of Colloid and Interface Science, 606, 1077–1086. doi:10.1016/j.jcis.2021.08.029
2021
3D printing of inherently nanoporous polymers via polymerization-induced phase separation
Dong, Z.; Cui, H.; Zhang, H.; Wang, F.; Zhan, X.; Mayer, F.; Nestler, B.; Wegener, M.; Levkin, P. A.
2021. Nature Communications, 12 (1), Art:nr. 247. doi:10.1038/s41467-020-20498-1
Phase-field formulation of a fictitious domain method for particulate flows interacting with complex and evolving geometries
Reder, M.; Schneider, D.; Wang, F.; Daubner, S.; Nestler, B.
2021. International Journal for Numerical Methods in Fluids, 93 (8), 2486–2507. doi:10.1002/fld.4984
Phase-field simulations of grain boundary grooving under diffusive-convective conditions
Laxmipathy, V. P.; Wang, F.; Selzer, M.; Nestler, B.
2021. Acta materialia, 204, Art.-Nr.: 116497. doi:10.1016/j.actamat.2020.116497
Phase-Field Modeling of Multiple Emulsions Via Spinodal Decomposition
Zhang, H.; Wu, Y.; Wang, F.; Guo, F.; Nestler, B.
2021. Langmuir, 37 (17), 5275–5281. doi:10.1021/acs.langmuir.1c00275
Liquid Wells as Self-Healing, Functional Analogues to Solid Vessels
Scheiger, J. M.; Kuzina, M. A.; Eigenbrod, M.; Wu, Y.; Wang, F.; Heißler, S.; Hardt, S.; Nestler, B.; Levkin, P. A.
2021. Advanced Materials, 33 (23), Art.-Nr.: 2100117. doi:10.1002/adma.202100117
Multiphase-field model for surface diffusion and attachment kinetics in the grand-potential framework
Hoffrogge, P. W.; Mukherjee, A.; Nani, E. S.; Amos, P. G. K.; Wang, F.; Schneider, D.; Nestler, B.
2021. Physical review / E, 103 (3), Article no: 033307. doi:10.1103/PhysRevE.103.033307
Wetting transition and phase separation on flat substrates and in porous structures
Wang, F.; Nestler, B.
2021. Journal of Chemical Physics, 154 (9), Art.-Nr.: 094704. doi:10.1063/5.0044914
2020
Microstructural transition in monotectic alloys: A phase-field study
Laxmipathy, V. P.; Wang, F.; Selzer, M.; Nestler, B.
2020. International journal of heat and mass transfer, 159, Art.-Nr. 120096. doi:10.1016/j.ijheatmasstransfer.2020.120096
How do chemical patterns affect equilibrium droplet shapes?
Wu, Y.; Wang, F.; Ma, S.; Selzer, M.; Nestler, B.
2020. Soft matter, 16 (26), 6115–6127. doi:10.1039/d0sm00196a
2019
Influence of melt convection on the morphological evolution of seaweed structures: Insights from phase-field simulations
Pavan Laxmipathy, V.; Wang, F.; Selzer, M.; Nestler, B.; Ankit, K.
2019. Computational materials science, 170, Art.-Nr. 109196. doi:10.1016/j.commatsci.2019.109196
Progress Report on Phase Separation in Polymer Solutions
Wang, F.; Altschuh, P.; Ratke, L.; Zhang, H.; Selzer, M.; Nestler, B.
2019. Advanced materials, 31 (26), Art.Nr. 1806733. doi:10.1002/adma.201806733
Phase-field investigation on the growth orientation angle of aluminum carbide with a needle-like structure at the surface of graphite particles
Cai, Y.; Wang, F.; Selzer, M.; Nestler, B.
2019. Modelling and simulation in materials science and engineering, 27 (6), Art.-Nr.: 065010. doi:10.1088/1361-651X/ab2351
Phase-field study on the growth of magnesium silicide occasioned by reactive diffusion on the surface of Si-foams
Wang, F.; Altschuh, P.; Matz, A. M.; Heimann, J.; Matz, B. S.; Nestler, B.; Jost, N.
2019. Acta materialia, 170, 138–154. doi:10.1016/j.actamat.2019.03.008
2018
Phase-field modeling of reactive wetting and growth of the intermetallic Al2 Au phase in the Al-Au system
Wang, F.; Reiter, A.; Kellner, M.; Brillo, J.; Selzer, M.; Nestler, B.
2018. Acta materialia, 146, 106–118. doi:10.1016/j.actamat.2017.12.015
Phase-field study of surface irregularities of a cathode particle during intercalation
Santoki, J.; Schneider, D.; Selzer, M.; Wang, F.; Kamlah, M.; Nestler, B.
2018. Modelling and simulation in materials science and engineering, 26 (6), 065013. doi:10.1088/1361-651X/aad20a
2017
Numerical and experimental investigations on the growth of the intermetallic Mg₂Si phase in Mg infiltrated Si-foams
Wang, F.; Matz, A. M.; Tschukin, O.; Heimann, J.; Mocker, B. S.; Nestler, B.; Jost, N.
2017. Advanced engineering materials, 19 (10), Art.Nr. 1700063. doi:10.1002/adem.201700063
2016
Detachment of nanowires driven by capillarity
Wang, F.; Nestler, B.
2016. Scripta materialia, 113, 167–170. doi:10.1016/j.scriptamat.2015.11.002
2015
Underdamped capillary wave caused by solutal Marangoni convection in immiscible liquids
Wang, F.; Ben Said, M.; Selzer, M.; Nestler, B.
2015. Journal of materials science, 51 (4), 1820–1828. doi:10.1007/s10853-015-9600-1
Experimental and Numerical Investigation on the Phase Separation Affected by Cooling Rates and Marangoni Convection in Cu-Cr Alloys
Wang, F.; Klinski-Wetzel, K. von; Mukherjee, R.; Nestler, B.; Heilmaier, M.
2015. Metallurgical and materials transactions / A, 46 (4), 1756–1766. doi:10.1007/s11661-015-2745-3
2014
Numerical study on solutal Marangoni instability in finite systems with a miscibility gap
Wang, F.; Mukherjee, R.; Selzer, M.; Nestler, B.
2014. Physics of fluids, 26 (12), Art.Nr. 1.4902355. doi:10.1063/1.4902355