Microstructure – Data Science

Bild IAM-MMS

Research

The research group “Microstructure – Data Science” focuses on the data-driven analysis and optimization of microstructures. To this end, methods for segmentation, characterization, and structure synthesis are developed, alongside data-driven analysis tools that make the interplay between microstructural features and macroscopic material behavior observable. In addition, computer vision techniques are specifically applied to medical imaging data. The developed methods are designed such that they can be transferred across domains and address both materials science and medical applications. For the creation of digital twins of microstructures, large-scale phase-field simulations are combined with computer vision methods that segment image data from various imaging modalities and reconstruct them into high-resolution 3D models. Building on these representations, generative algorithms and generative AI models are employed to synthesize microstructures with controllable properties, enabling realistic representations of porous systems such as membranes, grain structures, and geological packings. In collaboration with the “Research Data Management” group, workflows are developed for the reproducible and FAIR-compliant analysis of large datasets, ensuring that the described methods are automated, standardized, and reusable across different application contexts. The overarching aim of the research activities is the bridging of length scales through the identification of effective structure–property relationships and the development of data-driven predictive models that support accelerated and informed materials design.

 

Computer Vision

In the field of computer vision, versatile methods are developed for the automated analysis of complex image data from a wide range of modalities, including CT, MRI, and confocal microscopy. Core tasks include segmentation, reconstruction, registration, and super-resolution. By employing flexible model architectures, strategies for limited datasets, and the generation of synthetic training data, robust approaches are created that can be reliably transferred across different domains. In this way, both the creation of digital twins in materials science and the precise analysis of medical imaging data are supported.

Segmenting structures of interest is a crucial first step in any quantitative analysis pipeline. In our group, robust and adaptable segmentation approaches are developed for different application domains. While the primary focus lies on material-science and medical imaging data, the methods are designed to be transferable and easily applied to new datasets. 

To overcome the limited availability of annotated images, synthetic training data are generated for supervised segmentation tasks. Binary structures are produced using a GAN and subsequently refined with a CycleGAN to add realistic noise and texture. In this way, highly realistic training data are created to support the development of robust segmentation models.

Super-resolution methods are used to increase the resolution of volumetric or two-dimensional image data. In volumetric MRI, for example, low through-plane resolution often limits downstream analysis. To address this issue, a supervised VAE–GAN framework is used to generate realistic high-resolution training data. This enables accurate super-resolution reconstruction and leads to more robust volumetric MRI segmentation.

Event detection is an essential task when working with temporal image sequences. In dynamic contrast-enhanced MRI (DCE-MRI) of the lung, for example, breathing motion must be identified and removed to enable meaningful downstream analysis. To automate this step, learning-based models are employed that reliably detect respiratory motion, even under varying image contrast conditions.


A broad portfolio of analysis methods is available to reliably quantify geometric properties in digital material twins. Metrics such as porosity, wall thickness, and pore radius can be extracted with high accuracy, providing a detailed description of the underlying microstructure. These quantitative descriptors form an essential basis for establishing structure–property relationships and supporting data-driven materials analysis.

Data-driven analysis methods are used to extract higher-dimensional descriptors from microstructures. Statistical metrics such as two-point correlation functions combined with principal component analysis, as well as neural network–based approaches, enable the identification of latent structural features. These representations support the clustering and comparison of microstructures and provide deeper insights into underlying structure–property relationships.

To accelerate the simulation of wetting behaviour in porous membranes, pore network models are extracted from digital membrane twins. These models provide a simplified yet informative representation of the pore space, enabling faster simulations and allowing larger material domains to be analyzed efficiently while preserving the essential characteristics of the underlying microstructure.

To quantify perfusion in dynamic contrast-enhanced MRI (DCE-MRI) of the lungs, an automated pipeline is developed. Based on a mathematical model, the residue function is obtained from 3D+t lung measurements by deconvolving the sub-traction image with the arterial input function. This residue function is subse-quently used to compute quantitative perfusion maps, including parameters such as pulmonary blood flow (PBF) and the percentage of perfusion defects (QDP).


Characterization

To characterize microstructures, methods are developed for the quantitative description of complex geometries and statistical features. Based on digital material twins, classical descriptors such as porosity, wall thickness, pore-size distributions, and tortuosity are determined, along with higher-dimensional features derived from data-driven approaches such as two-point correlation functions or principal component analysis. In addition, neural networks are employed to identify latent structural patterns. Beyond materials science applications, medical imaging data are also analyzed, for example segmented lungs for perfusion assessment.

Structure Synthesis

Various methodological approaches are employed for the generation of synthetic microstructures. Simulation-based strategies rely on the phase-field method, while geometry-based techniques such as Voronoi constructions or packing algorithms enable the direct parametrization of structural properties. In addition, generative AI, particularly diffusion models and variational autoencoders, is used, building on reconstructed digital twins to enable rapid and tunable synthesis of realistic variants. In this way, arbitrary microstructures can be generated synthetically.

Diffusion models are trained on segmented and reconstructed digital material twins to generate synthetic, highly realistic microstructure representations. By conditioning the generation process, the properties of the generated microstructures can be specified in a targeted and controlled manner.

Geometric structure generation methods are employed to synthesize a wide range of microstructures, including membranes, foams, particle packings for geological and battery-related applications, as well as triply periodic minimal surfaces. Algorithmic approaches enable targeted control over structural features, allowing key properties to be adjusted directly through model parameters.



Workflows

Zur Automatisierung der entwickelten Methoden, von der Segmentierung und Rekonstruktion bis hin zur Charakterisierung und Struktursynthese, werden in Zusammenarbeit mit der Forschungsgruppe Forschungsdatenmanagement  reproduzierbare Workflows entwickelt. Mithilfe des KadiStudio-Workflow-Editors werden generische Prozessketten modelliert und in FAIR-konformer Weise ausführbar gemacht. Die modulare Struktur dieser Workflows ermöglicht deren Wiederverwendung in unterschiedlichen Anwendungsszenarien und gewährleistet eine effiziente Analyse großer und heterogener Datensätze.

Team
Name Function
Group leader
Group leader
Research assistant
Research Assistant
Associated team members
Name Function

2025
Beschleunigtes Materialdesign durch künstliche Intelligenz im Forschungsdatenmanagement. PhD dissertation
Griem, L.
2025, November 14. Karlsruher Institut für Technologie (KIT). doi:10.5445/IR/1000186848
Synthetic training data for CT image segmentation of microstructures
Griem, L.; Koeppe, A.; Greß, A.; Feser, T.; Nestler, B.
2025. Acta Materialia, 296, 121220. doi:10.1016/j.actamat.2025.121220
Quantitative MRI detects delayed perfusion and impact of bronchial artery dilatation on pulmonary circulation in patients with cystic fibrosis
Leutz-Schmidt, P.; Grolig, J.; Wucherpfennig, L.; Sommerburg, O.; Eichinger, M.; Wege, S.; Graeber, S. Y.; Schenk, J.-P.; Alrajab, A.; Kauczor, H.-U.; Stahl, M.; Mall, M. A.; Koeppe, A.; Nestler, B.; Selzer, M.; Triphan, S. M. F.; Wielpütz, M. O.
2025. European Radiology, 35 (10), 6217–6228. doi:10.1007/s00330-025-11589-y
2024
Kadi4Mat: AI Driven Extraction of Structure-Property Linkages from Material Databases
Griem, L. C.; Koeppe, A. H.; Selzer, M.; Nestler, B.
2024, October 9. Materials Process Applications Seminar (MPA 2024), Universität Stuttgart, October 8–10, 2024
A U-Net-based self-stitching method for generating periodic grain structures
Ji, Y.; Koeppe, A.; Altschuh, P.; Griem, L.; Rajagopal, D.; Nestler, B.
2024. Physica Scripta, 99 (7), Art.-Nr.: 076010. doi:10.1088/1402-4896/ad52cf
Towards automatic feature extraction and sample generation of grain structure by variational autoencoder
Ji, Y.; Koeppe, A.; Altschuh, P.; Rajagopal, D.; Zhao, Y.; Chen, W.; Chen, W.; Zhang, Y.; Zheng, Y.; Nestler, B.
2024. Computational Materials Science, 232, Art.-Nr.: 112628. doi:10.1016/j.commatsci.2023.112628
2023
An Interdisciplinary Approach to Manage Materials Data with Kadi4Mat and Chemotion
Altschuh, P.; Bräse, S.; Hartmann, T.; Jaeger, D.; Jung, N.; Koeppe, A.; Krauss, P.; Leister, C.; Nestler, B.; Schiefer, G.; Schreiber, C.; Selzer, M.; Starmann, M.; Tosato, G.
2023. E-Science-Tage 2023: Empower Your Research – Preserve Your Data. Ed.: Vincent Heuveline, Nina Bisheh, Philipp Kling, 264–269, heiBOOKS. doi:10.11588/heibooks.1288.c18086
Automated Documentation of Research Processes Using RDM
Griem, L. C.; Thelen, R.; Selzer, M.
2023. Proceedings of the Conference on Research Data Infrastructure, 1. doi:10.52825/cordi.v1i.411
KadiStudio Use-Case Workflow: Automation of Data Processing for in Situ Micropillar Compression Tests
Al-Salman, R.; Teixeira, C. A.; Zschumme, P.; Lee, S.; Griem, L.; Aghassi-Hagmann, J.; Kirchlechner, C.; Selzer, M.
2023. Data Science Journal, 22, Art.-Nr.: 21. doi:10.5334/dsj-2023-021
Characterization of porous membranes using artificial neural networks
Zhao, Y.; Altschuh, P.; Santoki, J.; Griem, L.; Tosato, G.; Selzer, M.; Koeppe, A.; Nestler, B.
2023. Acta Materialia, 253, Art.-Nr.: 118922. doi:10.1016/j.actamat.2023.118922
Revealing Structure-Property Linkages using Explainable AI
Griem, L. C.; Koeppe, A. H.; Feser, T.; Selzer, M.; Beeh, E.; Nestler, B.
2023, June. Helmholtz Artificial Intelligence Conference (Helmholtz AI 2023), Hamburg, Germany, June 12–14, 2023
Establishing structure–property linkages for wicking time predictions in porous polymeric membranes using a data-driven approach
Kunz, W.; Altschuh, P.; Bremerich, M.; Selzer, M.; Nestler, B.
2023. Materials Today Communications, 35, Art.-Nr.: 106004. doi:10.1016/j.mtcomm.2023.106004
Explainable Prediction of Mechanical Properties in Porous Microstructures
Griem, L. C.; Greß, A.; Koeppe, A. H.; Feser, T.; Selzer, M.; Beeh, E.; Nestler, B.
2023, May 11. 1st International Seminar on Modelling, Simulation and Machine Learning for the rapid development of porous materials (2023), Cologne, Germany, May 10–12, 2023
A 3D computational method for determination of pores per inch (PPI) of porous structures
Jamshidi, F.; Kunz, W.; Altschuh, P.; Lu, T.; Laqua, M.; August, A.; Löffler, F.; Selzer, M.; Nestler, B.
2023. Materials Today Communications, 34, Art.-Nr.: 105413. doi:10.1016/j.mtcomm.2023.105413
A U-Net-Based Self-Stitching Method for Generating Periodic Grain Structures
Ji, Y.; Koeppe, A.; Altschuh, P.; Griem, L.; Rajagopal, D.; Nestler, B.; Chen, W.; Zhang, Y.; Zheng, Y.
2023. doi:10.48550/arXiv.2310.20379
An interdisciplinary approach to data management
Altschuh, P.; Bräse, S.; Hartmann, T.; Jaeger, D.; Jung, N.; Krauss, P.; Leister, C.; Nestler, B.; Schiefer, G.; Schreiber, C.; Selzer, M.; Starman, M.; Tosato, G.; Koeppe, A.
2023. E-Science-Tage 2023: Empower Your Research – Preserve Your Data (2023), Heidelberg, Germany, March 1–3, 2023. doi:10.11588/heidok.00033126
2022
Identifying structure-property linkages in polyurethane foams to characterise their mechanical properties using machine learning
Griem, L. C.; Greß, A.; Altschuh, P.; Feser, T.; Koeppe, A. H.; Selzer, M.; Nestler, B.
2022, September 28. Materials Science and Engineering Congress (MSE 2022), Darmstadt, Germany, September 27–29, 2022
KadiStudio: FAIR Modelling of Scientific Research Processes
Griem, L.; Zschumme, P.; Laqua, M.; Brandt, N.; Schoof, E.; Altschuh, P.; Selzer, M.
2022. Data Science Journal, 21 (1), Art.-Nr: 16. doi:10.5334/dsj-2022-016
Predicting mechanical properties of porous microstructures through the identification of structure property linkages using machine learning algorithms
Griem, L. C.; Greß, A.; Altschuh, P.; Feser, T.; Selzer, M.; Beeh, E.; Nestler, B.
2022, June. Helmholtz Artificial Intelligence Conference (Helmholtz AI 2022), Dresden, Germany, June 2–3, 2022
Geometric flow control in lateral flow assays: Macroscopic single-phase modeling
Jamshidi, F.; Kunz, W.; Altschuh, P.; Bremerich, M.; Przybylla, R.; Selzer, M.; Nestler, B.
2022. Physics of Fluids, 34 (6), Art.-Nr.: 062110. doi:10.1063/5.0093316
Managing FAIR Tribological Data Using Kadi4Mat
Brandt, N.; Garabedian, N. T.; Schoof, E.; Schreiber, P. J.; Zschumme, P.; Greiner, C.; Selzer, M.
2022. Data, 7 (2), Art.-Nr. 15. doi:10.3390/data7020015
Computational Design and Characterisation of Gyroid Structures with Different Gradient Functions for Porosity Adjustment
Wallat, L.; Altschuh, P.; Reder, M.; Nestler, B.; Poehler, F.
2022. Materials, 15 (10), Art.-Nr.: 3730. doi:10.3390/ma15103730
2021
Membrane Characterisation using Machine Learning
Griem, L. C.; Koeppe, A. H.; Altschuh, P.; Schoof, E.; Brandt, N.; Zschumme, P.; Selzer, M.; Nestler, B.
2021, November 30. Euromembrane (2021), Copenhagen, Denmark, November 28–December 2, 2021
Kadi4Mat : A Research Data Infrastructure for Materials Science
Brandt, N.; Griem, L.; Herrmann, C.; Schoof, E.; Tosato, G.; Zhao, Y.; Zschumme, P.; Selzer, M.
2021. Data science journal, 20 (1), Art.-Nr.: 8. doi:10.5334/dsj-2021-008
MoMaF Science Data Center für Molekulare Materialforschung
Altschuh, P.; Bach, F.; Bräse, S.; Hartmann, T.; Jung, N.; Krauß, P.; Nestler, B.; Schiefer, G.; Schreiber, C.; Selzer, M.; Terzijska, D.
2021. E-Science-Tage 2019: Data to Knowledge (2021), Heidelberg, Germany, March 4–5, 2021
MoMaF Science Data Center für Molekulare Materialforschung
Altschuh, P.; Bach, F.; Bräse, S.; Hartmann, T.; Jung, N.; Krauß, P.; Nestler, B.; Schiefer, G.; Schreiber, C.; Selzer, M.; Terzijska, D.
2021. E-Science-Tage 2021: Share Your Research Data, Heidelberg, 04.03. - 05.03.2021. doi:10.11588/heidok.00029699
Phase-Field Model for the Simulation of Brittle-Anisotropic and Ductile Crack Propagation in Composite Materials
Herrmann, C.; Schneider, D.; Schoof, E.; Schwab, F.; Nestler, B.
2021. Materials, 14 (17), Art.-Nr.: 4956. doi:10.3390/ma14174956
Multiphase-field modeling of spinodal decomposition during intercalation in an Allen-Cahn framework
Daubner, S.; Kubendran Amos, P. G.; Schoof, E.; Santoki, J.; Schneider, D.; Nestler, B.
2021. Physical review materials, 5 (3), Article no: 035406. doi:10.1103/PhysRevMaterials.5.035406
2020
Skalenübergreifende Analyse makroporöser Membranen im Kontext digitaler Zwillinge. PhD dissertation
Altschuh, P.
2020, August 26. Karlsruher Institut für Technologie (KIT). doi:10.5445/IR/1000122904
A digital workflow for learning the reduced-order structure-property linkages for permeability of porous membranes
Yabansu, Y. C.; Altschuh, P.; Hötzer, J.; Selzer, M.; Nestler, B.; Kalidindi, S. R.
2020. Acta materialia, 195, 668–680. doi:10.1016/j.actamat.2020.06.003
Chemomechanische Modellierung der Wärmebehandlung von Stählen mit der Phasenfeldmethode. PhD dissertation
Schoof, E.
2020, April 1. Karlsruher Institut für Technologie (KIT). doi:10.5445/IR/1000117917
Influence of stress-free transformation strain on the autocatalytic growth of bainite: A multiphase-field analysis
Schoof, E.; Kubendran Amos, P. G.; Schneider, D.; Nestler, B.
2020. Materialia, 9, Article: 100620. doi:10.1016/j.mtla.2020.100620
The non-steady-state growth of divergent pearlite in Fe–C–Mn steels: a phase-field investigation
Mushongera, L. T.; Amos, P. G. K.; Schoof, E.; Kumar, P.; Nestler, B.
2020. Journal of materials science, 55, 5280–5295. doi:10.1007/s10853-019-04307-9
Limitations of preserving volume in Allen-Cahn framework for microstructural analysis
Kubendran Amos, P. G.; Schoof, E.; Santoki, J.; Schneider, D.; Nestler, B.
2020. Computational materials science, 173, Article No.109388. doi:10.1016/j.commatsci.2019.109388
Phase-field study of eutectic colony formation in NiAl-34Cr
Kellner, M.; Hötzer, J.; Schoof, E.; Nestler, B.
2020. Acta materialia, 182, 267–277. doi:10.1016/j.actamat.2019.10.028
2019
Non-Arrhenius grain growth in strontium titanate: Quantification of bimodal grain growth
Rheinheimer, W.; Schoof, E.; Selzer, M.; Nestler, B.; Hoffmann, M. J.
2019. Acta materialia, 174, 105–115. doi:10.1016/j.actamat.2019.05.040
Progress Report on Phase Separation in Polymer Solutions
Wang, F.; Altschuh, P.; Ratke, L.; Zhang, H.; Selzer, M.; Nestler, B.
2019. Advanced materials, 31 (26), Art.Nr. 1806733. doi:10.1002/adma.201806733
On the multiphase-field modeling of martensitic phase transformation in dual-phase steel using J2-viscoplasticity
Schoof, E.; Herrmann, C.; Streichhan, N.; Selzer, M.; Schneider, D.; Nestler, B.
2019. Modelling and simulation in materials science and engineering, 27 (2), 025010. doi:10.1088/1361-651X/aaf980
On the Volume-Diffusion Governed Termination-Migration Assisted Globularization in Two-Phase Solid-State Systems: Insights from Phase-Field Simulations
Amos, P. G. K.; Schoof, E.; Schneider, D.; Nestler, B.
2019. Proceedings of the 1st International Conference on Numerical Modelling in Engineering – Volume 2: Numerical Modelling in Mechanical and Materials Engineering, NME 2018, 28-29 August 2018, Ghent University, Belgium. Ed.: M. Abdel Wahab, 47–63, Springer. doi:10.1007/978-981-13-2273-0_5
Multiphase-Field Modeling and Simulation of Martensitic Phase Transformation in Heterogeneous Materials
Schoof, E.; Herrmann, C.; Schneider, D.; Hötzer, J.; Nestler, B.
2019. High Performance Computing in Science and Engineering ’18. Ed.: W. Nagel, 475–488, Springer International Publishing. doi:10.1007/978-3-030-13325-2_30
Phase-field study on the growth of magnesium silicide occasioned by reactive diffusion on the surface of Si-foams
Wang, F.; Altschuh, P.; Matz, A. M.; Heimann, J.; Matz, B. S.; Nestler, B.; Jost, N.
2019. Acta materialia, 170, 138–154. doi:10.1016/j.actamat.2019.03.008
Phase-field analysis of quenching and partitioning in a polycrystalline Fe-C system under constrained-carbon equilibrium condition
Kubendran Amos, P. G.; Schoof, E.; Streichan, N.; Schneider, D.; Nestler, B.
2019. Computational materials science, 159, 281–296. doi:10.1016/j.commatsci.2018.12.023
2018
Multiphase-field model of small strain elasto-plasticity according to the mechanical jump conditions
Herrmann, C.; Schoof, E.; Schneider, D.; Schwab, F.; Reiter, A.; Selzer, M.; Nestler, B.
2018. Computational mechanics, 62 (6), 1399–1412. doi:10.1007/s00466-018-1570-0
Chemo-elastic phase-field simulation of the cooperative growth of mutually-accommodating Widmanstätten plates
Kubendran Amos, P. G.; Schoof, E.; Schneider, D.; Nestler, B.
2018. Journal of alloys and compounds, 767, 1141–1154. doi:10.1016/j.jallcom.2018.07.138
Modeling of yield point phenomenon using multiphase field method
Kulkarni, N.; Herrmann, C.; Schoof, E.; Hoffrogge, P.; Schneider, D.; Nestler, B.; Schwab, R.
2018, May 11. International Materials Science Winter School (2018), Karlsruhe, Germany, November 5, 2018
Multiphase-field modeling of martensitic phase transformation in a dual-phase microstructure
Schoof, E.; Schneider, D.; Streichhan, N.; Mittnacht, T.; Selzer, M.; Nestler, B.
2018. International journal of solids and structures, 134, 181–194. doi:10.1016/j.ijsolstr.2017.10.032
Correction to: Small strain multiphase-field model accounting for configurational forces and mechanical jump conditions
Schneider, D.; Schoof, E.; Tschukin, O.; Reiter, A.; Herrmann, C.; Schwab, F.; Selzer, M.; Nestler, B.
2018. Computational mechanics, 61 (3), 297. doi:10.1007/s00466-017-1485-1
Small strain multiphase-field model accounting for configurational forces and mechanical jump conditions
Schneider, D.; Schoof, E.; Tschukin, O.; Reiter, A.; Herrmann, C.; Schwab, F.; Selzer, M.; Nestler, B.
2018. Computational mechanics, 61 (3), 277–295. doi:10.1007/s00466-017-1458-4
Characterization of a macro porous polymer membrane at micron-scale by Confocal-Laser-Scanning Microscopy and 3D image analysis
Ley, A.; Altschuh, P.; Thom, V.; Selzer, M.; Nestler, B.; Vana, P.
2018. Journal of membrane science, 564, 543–551. doi:10.1016/j.memsci.2018.07.062
2017
Simulation der martensitischen Transformation in polykristallinen Gefügen mit der Phasenfeldmethode
Schoof, E.; Streichhan, N.; Schneider, D.; Selzer, M.; Nestler, B.
2017. Forschung aktuell, 13–16
On stress and driving force calculation within multiphase-field models : Applications to martensitic phase transformation in multigrain systems
Schneider, D.; Schoof, E.; Schwab, F.; Herrmann, C.; Selzer, M.; Nestler, B.
2017. 4th GAMM Workshop on Phase Field Modeling, RWTH Aachen University, Germany, 2nd - 3rd February 2017
Data science approaches for microstructure quantification and feature identification in porous membranes
Altschuh, P.; Yabansu, Y. C.; Hötzer, J.; Selzer, M.; Nestler, B.; Kalidindi, S. R.
2017. Journal of membrane science, 540, 88–97. doi:10.1016/j.memsci.2017.06.020
On the stress calculation within phase-field approaches : a model for finite deformations
Schneider, D.; Schwab, F.; Schoof, E.; Reiter, A.; Herrmann, C.; Selzer, M.; Böhlke, T.; Nestler, B.
2017. Computational mechanics, 60 (2), 203–217. doi:10.1007/s00466-017-1401-8
2016
On stress and driving force calculation within phase-field models : Applications to martensitic phase transformation and crack propagation in multiphase systems
Schneider, D.; Schoof, E.; Tschukin, T.; Schwab, F.; Selzer, M.; Nestler, B.
2016. Interdisziplinäres Seminar Mathematik und Mechanik, Kaiserslautern, Deutschland, 2016
Phase-field modeling of crack propagation in multiphase systems
Schneider, D.; Schoof, E.; Schwab, F.; Selzer, M.; Nestler, B.
2016. EMMC15 : 15th European Mechanics of Materials Conference, Brussel, Belgium, 7th - 9th September 2016
Phase-field modeling of crack propagation in multiphase systems
Schneider, D.; Schoof, E.; Schwab, F.; Selzer, M.; Nestler, B.
2016. ECCOMAS 2016 : European Congress on Computational Methods in Applied Sciences and Engineering, Crete Island, Greece, 5th - 10th June 2016
Easto-plastic phase-field model accounting for mechanical jump conditions during solid-state phase transformations
Schneider, D.; Schoof, E.; Reiter, A.; Selzer, M.; Nestler. B.
2016. The 22nd International Symposium on Plasticity and Its Current Applications, Sheraton Kona Resort & Spa Keauhou Bay, Hawaii, 3rd - 9th January 2016
Phase-field modeling of crack propagation in multiphase Systems
Schneider, D.; Schoof, E.; Huang, Y.; Selzer, M.; Nestler, B.
2016. Computer methods in applied mechanics and engineering, 312, 186–195. doi:10.1016/j.cma.2016.04.009
Modeling of crack propagation on a mesoscopic length scale
Nestler, B.; Schneider, D. M.; Schoof, E.; Huang, Y.; Selzer, M.
2016. GAMM-Mitteilungen, 39 (1), 78–91. doi:10.1002/gamm.201610005
2015
Elastoplastic phase-field model accounting for mechanical jump conditions during solid-state phase transformations
Schneider, D.; Tschukin, O.; Schoof, E.; Choudhury, A.; Selzer, M.; Nestler, B.
2015. PTM 2015 : International Conference on Solid-Solid Phase Transformations in Inorganic Materials, Westin Whistler Resort & Spa, Canada, 28th June - 3rd July 2015
Elastoplastic phase-field model accounting for mechanical jump conditions during solid-state phase transformations
Schneider, D.; Tschukin, O.; Schoof, E.; Choudhury, A.; Selzer, M.; Nestler, B.
2015. ICM12 : 12th International Conference on the Mechanical Behavior of Materials, Karlsruhe, Germany, 10th - 14th May 2015
2014
Modelling of transient heat conduction with diffuse interface methods
Ettrich, J.; Choudhury, A.; Tschukin, O.; Schoof, E.; August, A.; Nestler, B.
2014. Modelling and simulation in materials science and engineering, 22 (8), Art.Nr. 085006/1–29. doi:10.1088/0965-0393/22/8/085006
2012
Computational analysis of bio inspired thermal absorber systems made of textile fabrics
Schoof, E.; Römmelt, M.; Selzer, M.; August, A.; Nestler, B.; Kneer, A.; Stegmaier, T.
2012. International School and Conference on Biological Materials Science, Potsdam, March 20-23, 2012