Data and Artificial Intelligence for Numerical Simulations
- Typ: Vorlesung / Übung (VÜ)
- Lehrstuhl: Mikrostruktur-Modellierung und Simulation
- Semester: SS 2026
-
Zeit:
Do. 23.04.2026
09:00 - 12:00, wöchentlich
20.21 Pool F
20.21 Kollegiengebäude am Zirkel, Teil 2 (SCC) (UG)
Do. 30.04.2026
09:00 - 12:00, wöchentlich
20.21 Pool F
20.21 Kollegiengebäude am Zirkel, Teil 2 (SCC) (UG)
Do. 07.05.2026
09:00 - 12:00, wöchentlich
20.21 Pool F
20.21 Kollegiengebäude am Zirkel, Teil 2 (SCC) (UG)
Do. 21.05.2026
09:00 - 12:00, wöchentlich
20.21 Pool F
20.21 Kollegiengebäude am Zirkel, Teil 2 (SCC) (UG)
Do. 11.06.2026
09:00 - 12:00, wöchentlich
20.21 Pool F
20.21 Kollegiengebäude am Zirkel, Teil 2 (SCC) (UG)
Do. 18.06.2026
09:00 - 12:00, wöchentlich
20.21 Pool F
20.21 Kollegiengebäude am Zirkel, Teil 2 (SCC) (UG)
Do. 25.06.2026
09:00 - 12:00, wöchentlich
20.21 Pool F
20.21 Kollegiengebäude am Zirkel, Teil 2 (SCC) (UG)
Do. 02.07.2026
09:00 - 12:00, wöchentlich
20.21 Pool F
20.21 Kollegiengebäude am Zirkel, Teil 2 (SCC) (UG)
Do. 09.07.2026
09:00 - 12:00, wöchentlich
20.21 Pool F
20.21 Kollegiengebäude am Zirkel, Teil 2 (SCC) (UG)
Do. 16.07.2026
09:00 - 12:00, wöchentlich
20.21 Pool F
20.21 Kollegiengebäude am Zirkel, Teil 2 (SCC) (UG)
Do. 23.07.2026
09:00 - 12:00, wöchentlich
20.21 Pool F
20.21 Kollegiengebäude am Zirkel, Teil 2 (SCC) (UG)
Do. 30.07.2026
09:00 - 12:00, wöchentlich
20.21 Pool F
20.21 Kollegiengebäude am Zirkel, Teil 2 (SCC) (UG)
- Dozent:
- SWS: 4
- LVNr.: 2182222
- Hinweis: Präsenz/Online gemischt
| Inhalt | Overview Numerical simulations are essential for solving complex physical problems, and integrating data-driven methods with AI enables greater accuracy and efficiency. This course provides students the skills to apply AI techniques to scientific data and simulations, combining theoretical foundations with practical applications. Learning Outcome Students will master advanced data-driven modeling techniques and independently apply AI methods to real-world scientific problems through structured projects and challenges. Learning Goals • Students understand advanced methods of data-driven modeling. • Students can apply AI techniques to scientific data and problems. • Students work independently on self-organized machine-learning projects. Teaching Methods • Lectures: In presence and via videos/flipped classroom sessions. • Individual Team Projects: Self-organized group challenges focusing on real-world applications. • Consultation Hours: Regular mentoring and Q&A sessions. Course Structure The course is divided into two main parts, each culminating in a group project. A preliminary tutorial ensures all students have foundational skills in Python and machine learning. Preliminary Tutorial: Python and Machine Learning Essentials Objective: Establish a baseline in Python programming and machine learning. Content: Data handling, basic ML workflows, and tools like scikit-learn and TensorFlow. Part 1: Generating Structured Simulation Data Objective: Learn systematic approaches to creating and managing simulation data for physical problems. Key Topics: • Data generation strategies for boundary and initial value problems. • Active learning for efficient data collection. • Structured data management and automated workflows. Group Project/Challenge 1: Teams create and document structured datasets for a physical simulation problem. Part 2: Deep Learning for Field- and Time-Dependent Data Objective: Apply deep learning to dynamic and spatial data using data-driven and physics-informed approaches. Key Topics: • Deep learning models (e.g., CNNs, RNNs, GANs) for simulations. • Hyperparameter tuning and optimization. • Combining neural networks with physical laws for interpretability. Group Project/Challenge 2: Teams develop a deep learning model to predict field- or time-dependent behavior in a physical system. Examination The course concludes with an oral examination and written reports based on group projects. |
| Vortragssprache | Englisch |