Atomistische Modellierung und Validierung

Leitung: Dr. Pavel Vladimirov
Bild

Unsere Gruppe führt atomistische Simulationen des Materialverhaltens unter extremen Umweltbedingungen zusammen mit der experimentellen Validierung der Modellvorhersagen durch. Das Hauptanwendungsgebiet sind Funktions- und Strukturwerkstoffe für die Kernfusion, die hohen Temperaturen, der Bestrahlung mit schnellen, das Kristallgitter dauerhaft schädigenden, Neutronen und hohen Konzentrationen gasförmiger Atome wie Helium und Wasserstoffisotopen aus Transmutationsvorgängen widerstehen müssen. Derartige Werkstoffe werden in der Abteilung "Metallische Werkstoffe"  entwickelt und charakterisiert.

Beryllium und intermetallische Berylliumlegierungen (wie z.B. BE12 Ti) werden als Neutronenmultiplikator-Materialien für zukünftige Kernfusionsreaktoren in Betracht gezogen. Dies Materialien sollen unvermeidliche Neutronenverluste durch Verdopplung ihrer Anzahl mittels (n,2n) -Reaktionen ausgeglichen. Die so zusätzliche gewonnen Neutronen sind in der Lage zusätzliches Tritium zu erzeugen, das zusammenhalten mit Deuterium als Brennstoff für die Fusionsreaktionen verwendet wird und selbsterhaltende Brennstoffkreisläufe ermöglicht.

Eine Methode zur industriellen Herstellung von Berylliden wurde von unserer Gruppe in Zusammenarbeit mit dem Ulba Metallurgical Plant, Kasachstan entwickelt. Für diese Entwicklung wurde die Arbeit der Gruppe zum Thema „Development of  advanced solid neuron multiplier of innovative T-breeding blanket design“ mit dem 2. Preis des „European Soft Innovation Prize“ von der EU-Kommission in Verbindung mit der zweijährigen Konferenz „Symposium on Fusion Technology (SOFT) in 2020 ausgezeichnet.

Eine breite Auswahl anderen Materialien wird ebenfalls in Betracht gezogen:

  • Metalle in dichtester Kugelpackung (z.B. Beryllium, Zirkonium, Yttrium)
  • krz-Metalle (Eisen, nanostrukturierte ferritische Stähle, Vanadiumlegierungen und Wolfram)
  • kfz -Metalle (austenitische Stähle am Beispiel von g-Fe)

Diese verwandten Materialien sind nicht nur Kandidaten für fortgeschrittene Kern- und Fusionsreaktoranwendungen, sondern haben auch ein hohes Potential als Strukturwerkstoffe für konzentrierte Solarkraftwerke, Düsentriebwerke, chemische Reaktoren oder für die Wasserstoffproduktion durch Thermolyse von Wasser. Ein wichtiges Forschungsthema ist die Wechselwirkung von Wasserstoff mit diesem Material.

 

 

Beryllium und intermetallische Berylliumlegierungen (wie Be12Ti) werden als Neutronenmuliplikator-Materialien für zukünftige Kernfusionsreaktoren in Betracht gezogen. Diese Materialien sollen unvermeidliche Neutronenverluste durch Verdoppelung ihrer Anzahl mittels (n,2n)-Reaktionen ausgleichen. Die so zusätzlich gewonnenen Neutronen sind in der Lage zusätzliches Tritium zu erzeugen, das, zusammen mit Deuterium, als Brennstoff für die Fusionsreaktion verwendet wird und selbsterhaltende Brennstoffkreisläufe ermöglicht.

Eine breite Auswahl anderer Materialien wird ebenfalls in Betracht gezogen: 
•    Metalle in dichtester Kugelpackung (z.B. Beryllium, Zirkonium, Yttrium),
•    krz-Metalle (Eisen, nanostrukturierte ferritische Stähle, Vanadiumlegierungen und Wolfram),
•    kfz-Metalle (austenitische Stähle am Beispiel von -Fe),
•    intermetallische Verbindungen (Beryllide, Fe17Y2).

Diese verwandten Materialien sind nicht nur Kandidaten für fortgeschrittene Kern- und Fusionsreaktoranwendungen, sondern haben auch ein hohes Potenzial als Strukturwerkstoffe für konzentrierte Solarkraftwerke, Düsentriebwerke, chemische Reaktoren oder für die Wasserstoffproduktion durch Thermolyse von Wasser. Ein wichtiges Forschungsthema ist die Wechselwirkung von Wasserstoff mit diesen Materialien.
 

Methoden der Forschung

Die Forschung der Gruppe Atomistic Modeling and (experimental) Validation (aMeV) konzentriert sich auf die Entwicklung von Modellen zur Voraussage makroskopischer Materialeigenschaften auf Grundlage von Prozessen auf atomarer Ebene. Diese Herausforderung verlangt Multiskalenansätze, weshalb wir zu diesem Zweck verschiedene Methoden anwenden und die entwickelten theoretischen Modelle durch gezielte Experimente sorgfältig validieren.

Simulationsmethoden

Die folgenden Modellierungsmethoden werden von unserer Gruppe auf verschiedenen Raum- und Zeitskalen angewandt: 

  • Methoden der Dichtefunktionaltheorie (ab-initio),
  • konventionelle und auf der Dichtefunktionaltheorie basierende Molekulardynamik,
  • atomistische, gitterbasierte kinetische Monte Carlo Simulationen und Methoden der Ratengleichungen.

Wir verwenden Dichtefunktionaltheorie-Codes wie VASP, Fleur und Wien2k. Für Simulationen auf größeren zeitlichen und räumlichen Skalen werden die Molekulardynamik-Codes LAMMPS und PARCAS verwendet.
Wir verwenden überlicherweise Pymatgen und Atomate zur Automatisierung und Analyse der Big Data-artigen Resultate, die durch Hochdurchsatz-ab initio-Berechnungen erzeugt werden. Wir verbessern Methoden gegebenenfalls (z.B. die Climbing-String-, sowie Nudged-Elastic-Band- und Dimer-Methoden für die Suche nach Übergangszuständen wie im VTST-Paket implementiert) und reichen, falls angemessen, pull requests der Verbesserungen ein. Wir entwickeln Methoden zur Anwendung von maschinellem Lernen bei der Entwicklung interatomarer Interaktionspotentiale auf Grundlage der Ergebnisse von ab initio-Berechnungen.

Experimentalarbeit

Der experimentelle Teil unserer Gruppe arbeitet entlang drei Hauptrichtungen: 

  • Entwicklung und Charakterisierung von Beryllium und Be-Legierungen zur Anwendung in Mänteln zukünftiger Fusionsreaktoren;
  • Validierungsexperimente zur Verifizierung der vorgeschlagenen Modelle.
  • Untersuchung von Wasserstoffisotopenwechselwirkungen mit Metalloberflächen zur Validierung der Multiskalenmodelle des Desorptions-, Rückhalte- und Absorptionsverhaltens.
     
Modell2

Ausstattung

Zugang zu Hochleistungsrechnern (HPC) für inteisive Computersimulationen:
- Marconi und Marconi-100 in Cineca Italien durch EUROfusion-Zuschuss,
- JFRS1am IFERC-CSC in Rokkasho Japan durch ein bilaterales Simulationsprojekt mit
  Japan im Rahmen des "Broader Approach" Konzepts für die Fusionsenergie,
- bwForCluster Justus in Ulm, Deutschland, durch Projekte, die von der baden-
   würtembergischen Regierung unterstützt werden,
- bwCluster 2.0 am SCC KIT
  Zugang zu den Anlagen in der Karlsruher Beryllium-Harding-Anlage und dem
  Labor für Fusionswerkstoffe (Heiße Zellen) am KIT-MMI sowie zu den FIB-,
  und Transmissionselektronenmikroskopen am IAM-AWP

Serviceleistungen

Serviceleistungen

Unsere Gruppe ist in der Lage, DFT-Berechnungen zur Abschätzung der Lösungs- und Bindungsenergien von Punktdefekten und Verunreinigungen im verschiedenen Metallen und Legierungen durchzuführen sowie vorläufige Phasendiagramme zu erstellen und zu validieren

Kooperationen

Unsere Gruppe profitiert von der engen Zusammenarbeit mit dem KIT-Fusionsmateriallabor, dem IAM-WBM und der Karlsruher Beryllium-Handling-Einrichtung (KBHF) sowie mit anderen Forschungsgruppen weltweit, wie:

  1. Entwicklung einer Technologie zur Herstellung fester Beryllidblöcke im industriellen Maßstab in Zusammenarbeit mit dem Ulba-Metallurgiewerk, Ust-Kamenogorsk, Kasachstan.
  2. Mikrostrukturelle und mikromechanische Untersuchungen von neutronenbestrahltem Beryllium in Zusammenarbeit mit Dr. V. Kuksenko vom Culham Centre for Fusion Energy, Großbritannien.
  3. Simulation der Wirkung von Helium und Strahlungsschäden auf Beryllium, Prof. Izabela Szlufarska, Universität Wisconsin - Madison, USA.
  4. Entwicklung von empirischen interatomaren Wechselwirkungspotentialen für Fe-Y in Zusammenarbeit mit Prof. G. J. Ackland, Universität Edinburgh und A. Ian Duff, Imperial College London, UK
  5. Entwicklung empirischer interatomarer Interaktionspotentiale für das Fe-Y-O-System im Rahmen des HRJRG-411 in Zusammenarbeit mit Prof. K. Albe, TU-Darmstadt, Deutschland.
  6. Entwicklung von analytischen Bindungsordnungspotentialen (ABOP) für das Be-He-System auf der Basis von ab initio-Daten in Zusammenarbeit mit der Gruppe von Prof. K. Nordlund, Universität Helsinki, Finnland.
  7. Langfristige Zusammenarbeit bei der Modellierung des strukturellen und funktionellen Materialverhaltens unter Fusionsbestrahlungsbedingungen mit dem "Kurchatov-Institut" (früher Institut für Atomenergie), Moskau, Russland (Dr. of Science, V. A. Borodin)
    1. Einfluss der Helium-Fehlstellencluster-Diffusion auf das Wachstum von Heliumblasen unter Neutronenbestrahlung von bcc-Eisen (DAAD-Forschungsstipendium 2004)
    2. Bildung von selbstinterstitiellen Clustern und ihre Diffusion in bestrahltem Beryllium und Zirkonium (auch mit der National Research Nuclear University "MEPhI", Moskau, Dr. M. G. Ganchenkova)
    3. Untersuchung der atomaren Mechanismen der quasispröden Rissausbreitung, Versprödung und plastischen Verformung von bcc-Eisen
  8. Groß angelegte erste Grundsatzstudien über die Mechanismen des Wachstums von Oxiddispersionspartikeln in ferritischen und ferritisch-martensitischen Stählen mit dem Institut für Festkörperphysik (ISSP), Universität von Lettland, Riga, Lettland (Prof. E. A. Kotomin, Dr. Yu. Zhukovskij);

Publikationen


Microstructural evolution in ODS-EUROFER steel caused by high-dose He ion implantations with systematic variation of implantation parameters
Emelyanova, O. V.; Gentils, A.; Borodin, V. A.; Dzhumaev, P. S.; Vladimirov, P. V.; Lindau, R.; Möslang, A.
2023. Nuclear Materials and Energy, 35, Art.-Nr.: 101456. doi:10.1016/j.nme.2023.101456
Thermo-mechanical behavior of titanium beryllide pebble beds at elevated temperatures
Reimann, J.; Cilingir, E.; Gaisin, R.; Goraieb, A.; Nakamichi, M.; Vladimirov, P.
2023. Proceedings of the 15th International Workshop on Beryllium Technology (BeWS-15) September, 14-15, 2022, Karlsruhe, Germany. Ed. P. Vladimirov; R. Gaisin, 284–291, Karlsruher Institut für Technologie (KIT)
Creep of beryllium pebbles after neutron irradiation to 6000 appm helium production
Chakin, V.; Rolli, R.; Zmitko, M.
2023. Proceedings of the 15th International Workshop on Beryllium Technology (BeWS-15) September, 14-15, 2022, Karlsruhe, Germany. Ed.: V. Pavel; R. Gaisin, 267–283, Karlsruher Institut für Technologie (KIT)
Nanoscale characterization of beryllide materials
Duerrschnabel, M.; Gaisin, R.; Vladimirov, P.; Rieth, M.
2023. Proceedings of the 15th International Workshop on Beryllium Technology (BeWS-15) September, 14-15, 2022, Karlsruhe, Germany(KIT Scientific Reports ; 7764). Ed.: V. Pavel; R. Gaisin, 238–248, Karlsruher Institut für Technologie (KIT)
Ab initio study of hydrogen behavior in titanium beryllides
Bachurin, D. V.; Stihl, C.; Vladimirov, P. V.
2023. Proceedings of the 15th International Workshop on Beryllium Technology (BeWS-15) September, 14-15, 2022, Karlsruhe, Germany(KIT Scientific Reports ; 7764). Ed.: V. Pavel; G. Ramil, 227–237, Karlsruher Institut für Technologie (KIT)
Effect of impurities on microstructural evolution under irradiation in beryllium
Vladimirov, P. V.; Bachurin, D. V.; Stihl, C.; Zimber, N.
2023. Proceedings of the 15th International Workshop on Beryllium Technology (BeWS-15) September, 14-15, 2022, Karlsruhe, Germany, 206–226, Karlsruher Institut für Technologie (KIT)
Radiation induced formation gas bubbles in beryllium after neutron irradiation up to 6000 appm helium production
Klimenkov, M.; Jäntsch, U.; Chakin, V.; Zimber, N.; Vladimirov, P.
2023. Proceedings of the 15th International Workshop on Beryllium Technology (BeWS-15) September, 14-15, 2022, Karlsruhe, Germany, 194–205, Karlsruher Institut für Technologie (KIT)
First principles simulation of resistivity recovery in irradiated beryllium
Stihl, C.; Vladimirov, P.
2023. Proceedings of the 15th International Workshop on Beryllium Technology (BeWS-15) September, 14-15, 2022, Karlsruhe, Germany, 186–193, Karlsruher Institut für Technologie (KIT)
Beryllides as advanced materials for neutron multiplication
Gaisin, R.; Rolli, R.; Chakin, V.; Vladimirov, P.
2023. Proceedings of the 15th International Workshop on Beryllium Technology (BeWS-15) September, 14-15, 2022, Karlsruhe, Germany, 141–164, Karlsruher Institut für Technologie (KIT)
In memory of Glen Longhurst (1943-2022)
Vladimirov, P. V.; Dorn, C. K.
2023. Proceedings of the 15th International Workshop on Beryllium Technology (BeWS-15) September, 14-15, 2022, Karlsruhe, Germany, Karlsruher Institut für Technologie (KIT)
Beryllium intermetallics: Industrial experience on development and manufacture
Gaisin, R.; Frants, Y.; Kolmakov, M.; Zorin, B.; Kylyshkanov, M.; Podoinikov, M.; Udartsev, S.; Vechkutov, A.; Chakin, V.; Vladimirov, P.
2023. Nuclear Materials and Energy, 35, Art.-Nr.: 101444. doi:10.1016/j.nme.2023.101444
Lanthanum plumbide as a new neutron multiplier material
Gaisin, R.; Pereslavtsev, P.; Baumgaertner, S.; Seemann, K.; Gaisina, E.; Chakin, V.; Udartsev, S.; Vladimirov, P.; Gorr, B.
2023. Journal of Materials Research and Technology, 24, 3399–3412. doi:10.1016/j.jmrt.2023.03.211
Hydrogen and helium trapping in hcp beryllium
Zimber, N.; Lammer, J.; Vladimirov, P.; Kothleitner, G.; Keast, V. J.; Dürrschnabel, M.; Klimenkov, M.
2023. Communications Chemistry, 6 (1), 76. doi:10.1038/s42004-023-00877-7
Ab initio study of hydrogen in titanium beryllides
Bachurin, D. V.; Stihl, C.; Vladimirov, P.
2023. Karlsruher Institut für Technologie (KIT). doi:10.5445/IR/1000157464
Shock loading of carbon nanotube bundle
Galiakhmetova, L. K.; Bachurin, D. V.; Korznikova, E. A.; Bayazitov, A. M.; Kudreyko, A. A.; Dmitriev, S. V.
2022. Mechanics of Materials, 174, Art.-Nr.: 104460. doi:10.1016/j.mechmat.2022.104460
Swelling of Highly Neutron Irradiated Beryllium and Titanium Beryllide
Chakin, V.; Fedorov, A.; Gaisin, R.; Zmitko, M.
2022. Journal of Nuclear Engineering, 3 (4), 398–408. doi:10.3390/jne3040026
Atomistic study of two-dimensional discrete breathers in hcp titanium
Bachurina, O. V.; Murzaev, R. T.; Kudreyko, A. A.; Dmitriev, S. V.; Bachurin, D. V.
2022. The European Physical Journal B, 95 (7), Art.-Nr.: 104. doi:10.1140/epjb/s10051-022-00367-0
Highly efficient energy and mass transfer in bcc metals by supersonic 2-crowdions
Shepelev, I. A.; Bachurin, D. V.; Korznikova, E. A.; Dmitriev, S. V.
2022. Journal of Nuclear Materials, 568, Art.-Nr.: 153841. doi:10.1016/j.jnucmat.2022.153841
Propagation of supersonic excitations through the carbon nanotube forest
Galiakhmetova, L. K.; Bachurin, D. V.; Korznikova, E. A.; Shepelev, I. A.; Dmitriev, S. V.
2022. Laser Physics, Photonic Technologies, and Molecular Modeling. Ed.: V. L. Derbov, Art.-Nr.: 121930F, SPIE. doi:10.1117/12.2626862
Effect of HIP at 1000–1200 °C on microstructure and properties of extruded Be-Ti composites
Gaisin, R.; Kuksenko, V.; Duerrschnabel, M.; Chakin, V.; Goraieb, A.; Vladimirov, P.
2022. Nuclear Materials and Energy, 30, Art. Nr.: 101128. doi:10.1016/j.nme.2022.101128
Titanium beryllide as an alternative to beryllium in nuclear and thermonuclear engineering, capabilities of UMP JSC in the technology development and beryllides products manufacture
Frants, Y.; Borsuk, A.; Vechkutov, A.; Zenkov, K.; Zorin, B.; Kylyshkanov, M.; Podoinikov, M.; Udartsev, S.; Vladimirov, P.; Gaisin, R.
2022. Journal of Physics: Conference Series, 2155 (1), Art.Nr.: 012015. doi:10.1088/1742-6596/2155/1/012015
Thermal conductivity of high-dose neutron irradiated beryllium and titanium beryllide
Chakin, V.; Fedorov, A.; Rolli, R.; Gaisin, R.; Klimenkov, M.; Reimann, J.; Nakamichi, M.
2022. Journal of nuclear materials, 559, Art.Nr.: 153430. doi:10.1016/j.jnucmat.2021.153430
Thermo-mechanical behavior of titanium beryllide pebble beds at ambient temperature
Reimann, J.; Fretz, B.; Gaisin, R.; Goraieb, A.; Kim, J.-H.; Nakano, S.; Nakamichi, M.; Vladimirov, P.
2021. Fusion engineering and design, 165, Art.-Nr. 112249. doi:10.1016/j.fusengdes.2021.112249
Mechanism of remote vacancy emergence by a supersonic crowdion cluster in a 2D Morse lattice
Shepelev, I. A.; Bachurin, D. V.; Korznikova, E. A.; Bayazitov, A. M.; Dmitriev, S. V.
2021. Chinese Journal of Physics, 70, 355–362. doi:10.1016/j.cjph.2021.01.010
Tritium release and retention in beryllium pebbles irradiated up to 640 appm tritium and 6000 appm helium
Chakin, V.; Rolli, R.; Klimenkov, M.; Zmitko, M.
2020. Journal of nuclear materials, 542, Art.-Nr.: 152521. doi:10.1016/j.jnucmat.2020.152521
Bubble-to-void transition promoted by oxide nanoparticles in ODS-EUROFER steel ion implanted to high He content
Emelyanova, O.; Gentils, A.; Borodin, V. A.; Ganchenkova, M. G.; Vladimirov, P. V.; Dzhumaev, P. S.; Golovchanskiy, I. A.; Lindau, R.; Möslang, A.
2021. Journal of nuclear materials, 545, Art.-Nr.: 152724. doi:10.1016/j.jnucmat.2020.152724
Evolution of the carbon nanotube bundle structure under biaxial and shear strains
Rysaeva, L. K.; Bachurin, D. V.; Murzaev, R. T.; Abdullina, D. U.; Korznikova, E. A.; Mulyukov, R. R.; Dmitriev, S. V.
2020. Facta Universitatis / Series mechanical engineering, 18 (4), 525–536. doi:10.22190/FUME201005043R
Ab initio study of hydrogen diffusion in Be and BeTi for fusion applications
Bachurin, D. V.; Stihl, C.; Vladimirov, P. V.
2021. Computational materials science, 187, Art.-Nr.: 109921. doi:10.1016/j.commatsci.2020.109921
Development and characterization of advanced neutron multiplier materials
Vladimirov, P. V.; Chakin, V. P.; Dürrschnabel, M.; Gaisin, R.; Goraieb, A.; Gonzalez, F. A. H.; Klimenkov, M.; Rieth, M.; Rolli, R.; Zimber, N.; Udartsev, S.; Kolmakov, M.; Vechkutov, A.; Frants, E.
2021. Journal of nuclear materials, 543, Art. Nr.: 152593. doi:10.1016/j.jnucmat.2020.152593
Assessment of multiscale hydrogen desorption models from (0001) Be surfaces
Stihl, C.; Vladimirov, P. V.; Möslang, A.
2021. Journal of nuclear materials, 543, Art. Nr.: 152595. doi:10.1016/j.jnucmat.2020.152595
Effect of HIP at 800 and 900 °C on microstructure and properties of extruded Be-Ti composites
Gaisin, R.; Chakin, V.; Duerrschnabel, M.; Rolli, R.; Weingärtner, T.; Goraieb, A.; Vladimirov, P.
2020. Nuclear materials and energy, 24, 100771. doi:10.1016/j.nme.2020.100771
Ultrasonic treatment of ultrafine-grained titanium
Murzaev, R. T.; Bachurin, D. V.; Mukhametgalina, A. A.; Murzinova, M. A.; Nazarov, A. A.
2020. Physics letters / A, 384 (35), Art.-Nr.: 126906. doi:10.1016/j.physleta.2020.126906
Energy exchange in M-crowdion clusters in 2D Morse lattice
Shepelev, I. A.; Bachurin, D. V.; Korznikova, E. A.; Dmitriev, S. V.
2020. The European physical journal / B, 93 (9), Art. Nr.: 167. doi:10.1140/epjb/e2020-10160-0
Tritium release and retention in beryllium and titanium beryllide after neutron irradiation up to damage doses of 23-38 dpa
Chakin, V.; Rolli, R.; Gaisin, R.; Hoeppener-Kramar, U.; Nakamichi, M.; Zmitko, M.
2020. Fusion engineering and design, 161, Art.-Nr.: 111938. doi:10.1016/j.fusengdes.2020.111938
Industrial-scale manufacturing experience of titanium beryllide block for DEMO blanket application
Gaisin, R.; Chakin, V.; Vladimirov, P.; Hernández, F. A.; Udartsev, S.; Vechkutov, A.; Kolmakov, M.
2020. Fusion engineering and design, 161, Art.-Nr.: 111862. doi:10.1016/j.fusengdes.2020.111862
Investigation of a high-dose irradiated beryllium microstructure
Zimber, N.; Vladimirov, P.; Klimenkov, M.; Kuksenko, V.
2020. Journal of nuclear materials, 540, Art. Nr.: 152374. doi:10.1016/j.jnucmat.2020.152374
New insights into microstructure of irradiated beryllium based on experiments and computer simulations
Klimenkov, M.; Vladimirov, P.; Jäntsch, U.; Kuksenko, V.; Rolli, R.; Möslang, A.; Zimber, N.
2020. Scientific reports, 10 (1), Article: 8042. doi:10.1038/s41598-020-64654-5
Microstructural evolution of three potential fusion candidate steels under ion-irradiation
Zimber, N.; Vladimirov, P.; Klimenkov, M.; Jäntsch, U.; Vila, R.; Chakin, V.; Mota, F.
2020. Journal of nuclear materials, 535, Article No.152160. doi:10.1016/j.jnucmat.2020.152160
Linking tracks in mica crystals with phase transitions in a bistable lattice
Krylova, K. A.; Korznikova, E. A.; Semenov, A. S.; Bachurin, D. V.; Dmitriev, S. V.
2020. The European physical journal / B, 93 (2), Article No.23. doi:10.1140/epjb/e2020-100565-0
Synthesis of Be₁₂Ti compound via arc melting or hot isostatic pressing
Gaisin, R.; Chakin, V.; Rolli, R.; Hoffmann, J.; Leiste, H.; Bergfeldt, T.; Jäntsch, U.; Klimenkov, M.; Lorenz, J.; Goraieb, A.; Vladimirov, P.; Möslang, A.
2020. Journal of alloys and compounds, 818, Article No.152919. doi:10.1016/j.jallcom.2019.152919
Vacancies and interstitials in yttrium
Borodin, V. A.; Vladimirov, P. V.
2019. Journal of physics / Condensed matter, 31 (18), Art. Nr.: 185401. doi:10.1088/1361-648X/ab0255
Supersonic crowdion clusters in 2D Morse lattice
Shepelev, I. A.; Korznikova, E. A.; Bachurin, D. V.; Semenov, A. S.; Chetverikov, A. P.; Dmitriev, S. V.
2019. Physics letters / A, 384 (1), Article No.126032. doi:10.1016/j.physleta.2019.126032
First simultaneous detection of helium and tritium inside bubbles in beryllium
Klimenkov, M.; Vladimirov, P.; Hoffmann, J.; Zimber, N.; Möslang, A.; Kuksenko, V.
2019. Micron, 127, Art. Nr.: 102754. doi:10.1016/j.micron.2019.102754
Irradiation damage and lifetimes of materials and components. Impact of operational conditions
Hesch, K.; Aktaa, J.; Gaganidze, E.; Rieth, M.; Vladimirov, P.
2019. 6th IAEA DEMO Programme Workshop (DPWS 2019), Moskau, Russland, 1.–4. Oktober 2019
Characterization of helium and tritium filled bubbles in irradiated beryllium
Klimenkov, ..; Hoffmann, ..; Vladimirov, P.; Chakin, V.; Möslang, A.
2018. 19th International Microscopy Congress (IMC 2018), Sydney, Australien, 9.–14. September 2018
The influence of Fe-ion irradiation on the microstructure of reduced activation ferritic-martensitic steel Eurofer 97
Rogozhkin, S. V.; Nikitin, A. A.; Khomich, A. A.; Lukyanchuk, A. A.; Raznitsyn, O. A.; Shutov, A. S.; Fedin, P. A.; Kulevoy, T. V.; Vasiliev, A. L.; Presnyakov, M. Y.; Möslang, A.; Lindau, R.; Vladimirov, P.
2019. Nuclear fusion, 59 (8), Article: 086018. doi:10.1088/1741-4326/ab1e18
Molecular dynamics study of two-dimensional discrete breather in nickel
Bachurina, O. V.; Murzaev, R. T.; Bachurin, D. V.
2019. Journal of micromechanics and molecular physics, 3 (4), 1950001. doi:10.1142/S2424913019500012
Relaxation of dislocation structures under ultrasonic influence
Bachurin, D. V.; Murzaev, R. T.; Nazarov, A. A.
2019. International journal of solids and structures, 156-157, 1–13. doi:10.1016/j.ijsolstr.2018.06.007
Ab initio modelling of the initial stages of the ODS particle formation process
Mastrikov, Y. A.; Sokolov, M. N.; Koch, S.; Zhukovskii, Y. F.; Gopejenko, A.; Vladimirov, P. V.; Borodin, V. A.; Kotomin, E. A.; Möslang, A.
2018. Nuclear instruments & methods in physics research / B, 435, 70–73. doi:10.1016/j.nimb.2018.01.022
Functional Materials in Blankets
Knitter, R.; Vladimirov, P.
2018, November 22. 26th European Fusion Programme Workshop (EFPW 2018), Bad Dürkheim, Deutschland, 20.–23. November 2018
Annealing-induced grain rotation in ultrafine-grained aluminum alloy
Danilenko, V. N.; Bachurin, D. V.; Nazarov, A. A.
2018. Reviews on advanced materials science, 55 (1-2), 69–77
Effect of heat treatment of titanium beryllide on tritium/hydrogen release
Chakin, V.; Rolli, R.; Gaisin, R.; Kurinskiy, P.; Kim, J.-H.; Nakamichi, M.
2018. Fusion engineering and design, 137, 165–171. doi:10.1016/j.fusengdes.2018.09.005
Ab initio modelling of the Y, O, and Ti solute interaction in fcc-Fe matrix
Gopejenko, A.; Mastrikov, Y. A.; Zhukovskii, Y. F.; Kotomin, E. A.; Vladimirov, P.; Möslang, A.
2018. Nuclear instruments & methods in physics research / B, 433, 106–110. doi:10.1016/j.nimb.2018.07.033
Influence of internal stresses on deformation behavior of nanocrystalline palladium
Bachurin, D. V.
2018. Materials science and engineering / A, 734, 255–259. doi:10.1016/j.msea.2018.07.095
Ab initio study of Be and Be12Ti for fusion applications
Bachurin, D. V.; Vladimirov, P. V.
2018. Intermetallics, 100, 163–170. doi:10.1016/j.intermet.2018.06.009
Overview of the HCPB research activities in EUROfusion
Hernandez, F. A.; Arbeiter, F.; Boccaccini, L. V.; Bubelis, E.; Chakin, V. P.; Cristescu, I.; Ghidersa, B. E.; Gonzalez, M.; Hering, W.; Hernandez, T.; Jin, X. Z.; Kamlah, M.; Kiss, B.; Knitter, R.; Kolb, M. H. H.; Kurinskiy, P.; Leys, O.; Maione, I. A.; Moscardini, M.; Nadasi, G.; Neuberger, H.; Pereslavtsev, P.; Pupeschi, S.; Rolli, R.; Ruck, S.; Spagnuolo, G. A.; Vladimirov, P. V.; Zeile, C.; Zhou, G.
2018. IEEE transactions on plasma science, 46 (9), 2247–2261. doi:10.1109/TPS.2018.2830813
Development and qualification of functional materials for the European HCPB TBM
Zmitko, M.; Vladimirov, P.; Knitter, R.; Kolb, M.; Leys, O.; Heuser, J.; Schneider, H.-C.; Rolli, R.; Chakin, V.; Pupeschi, S.; Magielsen, L.; Fedorov, A.; Poitevin, Y.
2018. Fusion engineering and design, 136, 1376–1385. doi:10.1016/j.fusengdes.2018.05.014
Microstructural evaluation of beryllium after neutron irradiation up to 6000 appm helium production
Klimenkov; Jäntsch, U.; Hoffmann, J.; Kuksenko, V.; Vladimirov, P.; Chakin, V.; Möslang, A.
2017. 18th International Conference on Fusion Reactor Materials (ICFRM-18) (2017), Aomori, Japan, 5.–17. November 2017
Development and Qualification of Functional Materials for the European HCPB TBM
Zmitko, M.; Poitevin, Y.; Vladimirov, P.; Knitter, R.; Kolb, M.; Leys, O.; Heuser, J.; Schneider, H. C.; Rolli, R.; Chakin, V.; Pupeschi, S.; Magielsen, L.; Fedorov, A.
2017. 13th International Symposium on Fusion Nuclear Technology (ISFNT-13), Kyoto, J, September 25-29, 2017
Atom probe tomography of the evolution of the nanostructure of oxide dispersion strengthened steels under ion irradiation
Orlov, N. N.; Rogozhkin, S. V.; Bogachev, A. A.; Korchuganova, O. A.; Nikitin, A. A.; Zaluzhnyi, A. G.; Kozodaev, M. A.; Kulevoy, T. V.; Kuibeda, R. P.; Fedin, P. A.; Chalykh, B. B.; Lindau, R.; Hoffmann, J.; Möslang, A.; Vladimirov, P.
2018. Russian metallurgy (metally), 2017 (9), 741–747. doi:10.1134/S0036029517090105
Tomographic atom probe study of nanostructure evolution of oxide dispersion strengthened steels under ion irradiation
Orlov, N. N.; Rogozhkin, S. V.; Bogachev, A. A.; Korchuganova, O. A.; Nikitin, A. A.; Zaluzhnyi, A. G.; Kozodaev, M. A.; Kulevoy, T. V.; Kuibeda, R. P.; Fedin, P. A.; Chalykh, B. B.; Lindau, R.; Hoffmann, J.; Möslang, A.; Vladimirov, P.
2017. МЕТАЛЛЫ, 2017 (5), 70–76
Modeling and Experimental Validation of Hydrogen Behavior in Beryllium
Vladimirov, P. V.; Bachurin, D.; Chakin, V.; Klimenkov, M.; Stihl, C.; Möslang, A.
2017, November 8. 18th International Conference on Fusion Reactor Materials (ICFRM-18) (2017), Aomori, Japan, 5.–17. November 2017
Transmission electron microscopy study of the heavy-ion-irradiation-induced changes in the nanostructure of oxide dispersion strengthened steels
Rogozhkin, S. V.; Bogachev, A. A.; Orlov, N. N.; Korchuganova, O. A.; Nikitin, A. A.; Zaluzhnyi, A. G.; Kozodaev, M. A.; Kulevoy, T. V.; Kuibeda, R. P.; Fedin, P. A.; Chalykh, B. B.; Lindau, R.; Hoffman, Y.; Möslang, A.; Vladimirov, P.; Klimenkov, M.
2017. Russian metallurgy (metally), 2017 (7), 554–560. doi:10.1134/S0036029517070126
Combined BC/MD approach to the evaluation of damage from fast neutrons and its implementation for beryllium irradiation in a fusion reactor
Borodin, V. A.; Vladimirov, P. V.
2017. Modelling and simulation in materials science and engineering, 25 (8), Art.Nr.: 084005. doi:10.1088/1361-651X/aa8f6b
Ultrasonic influence on evolution of disordered dislocation structures
Bachurin, D. V.; Murzaev, R. T.; Nazarov, A. A.
2017. Modelling and simulation in materials science and engineering, 25 (8), Art.Nr.: 085010. doi:10.1088/1361-651X/aa9199
Relaxation of the residual defect structure in deformed polycrystals under ultrasonic action
Murzaev, R. T.; Bachurin, D. V.; Nazarov, A. A.
2017. The physics of metals and metallography, 118 (7), 621–629. doi:10.1134/S0031918X17070079
Ab initio study of beryllium surfaces with different hydrogen coverages
Bachurin, D. V.; Vladimirov, P. V.
2017. Acta materialia, 134, 81–92. doi:10.1016/j.actamat.2017.05.031
The current status of the European ITER test blanket modules development
Zmitko, M.; Vallory, J.; Carin, Y.; Poitevin, Y.; Calvo Plaza, F. J.; Sadaba, S.; Gil, A.; Thomas, N.; Li Puma, A.; Forest, L.; Aiello, G.; Cogneau, L.; Rey, J.; Neuberger, H.; Vladimirov, P.; Chakin, V.; Knitter, R.; Aktaa, J.; Gaganidze, E.; Magielsen, L.; Fedorov, A.
2016. 29th International Symposium on Fusion Technology (SOFT 2016), Prag, Tschechien, 5.–9. September 2016
Effect of grain boundary segregation of Co or Ti on cyclic deformation of aluminium bi-crystals
Babicheva, R. I.; Dmitriev, S. V.; Bachurin, D. V.; Srikanth, N.; Zhang, Y.; Kok, S. W.; Zhou, K.
2017. International journal of fatigue, 102, 270–281. doi:10.1016/j.ijfatigue.2017.01.038
Instability of vibrational modes in hexagonal lattice
Korznikova, E. A.; Bachurin, D. V.; Fomin, S. Y.; Chetverikov, A. P.; Dmitriev, S. V.
2017. The European physical journal / B, 90 (2), Art. Nr.: 23. doi:10.1140/epjb/e2016-70595-2
Localized vibrational modes in diamond
Murzaev, R. T.; Bachurin, D. V.; Korznikova, E. A.; Dmitriev, S. V.
2017. Physics letters / A, 381 (11), 1003–1008. doi:10.1016/j.physleta.2017.01.014
Damage production in atomic displacement cascades in beryllium
Borodin, V. A.; Vladimirov, P. V.
2016. Nuclear materials and energy, 9, 216–220. doi:10.1016/j.nme.2016.07.001
First-principles and classical molecular dynamics study of threshold displacement energy in beryllium
Vladimirov, P. V.; Borodin, V. A.
2017. Nuclear instruments & methods in physics research / B, 593, 195–199. doi:10.1016/j.nimb.2016.09.027
Effect of hydrogen on equilibrium shape of gas bubbles in beryllium
Bachurin, D.; Vladimirov, P.
2016. 12th International Workshop on Beryllium Technology (BeWS-12), Jeju, South Korea, 10-11 September, 2015. Ed.: K. Jae-Hwan, 118–130, Nihon Genshiryoku Kenkyū Kaihatsu Kikō. doi:10.11484/jaea-review-2015-044
Evolution of microstructure in advanced ferritic-martensitic steels under irradiation : the origin of low temperature radiation embrittlement
Rogozhkin, S.; Nikitin, A.; Orlov, N.; Bogachev, A.; Korchuganova, O.; Aleev, A.; Zaluzhnyi, A.; Kulevoy, T.; Lindau, R.; Möslang, A.; Vladimirov, P.
2016. MRS advances, 2 (21-22), 1143–1155. doi:10.1557/adv.2016.657
Temperature-dependent EXAFS study of the local structure and lattice dynamics in cubic Y2O3
Jonane, I.; Lazdins, K.; Timoshenko, J.; Kuzmin, A.; Purans, J.; Vladimirov, P.; Graening, T.; Hoffmann, J.
2016. Journal of synchrotron radiation, 23 (2), 510–518. doi:10.1107/S1600577516001181
Tritium and helium release from beryllium pebbles neutron-irradiated up to 230appm tritium and 3000appm helium
Chakin, V.; Rolli, R.; Vladimirov, P.; Moeslang, A.
2016. Nuclear materials and energy, 9, 207–215. doi:10.1016/j.nme.2016.07.007
Ab initio modelling of Y–O cluster formation in γ-Fe lattice
Gopejenko, A.; Zhukovskii, Y. F.; Kotomin, E. A.; Mastrikov, Y. A.; Vladimirov, P. V.; Borodin, V. A.; Möslang, A.
2016. Physica status solidi / B, 253 (11), 2136–2143. doi:10.1002/pssb.201600472
Multiscale modelling of hydrogen behaviour on beryllium (0001) surface
Stihl, C.; Vladimirov, P. V.
2016. Nuclear materials and energy, 9, 547–553. doi:10.1016/j.nme.2016.08.003
Simulation of hydrogen effect on equilibrium shape of gas bubbles in beryllium
Bachurin, D. V.; Vladimirov, P. V.
2016. Fusion engineering and design, 109, Part B, 1432–1436. doi:10.1016/j.fusengdes.2015.12.004
TEM characterization of irradiated beryllium
Klimenkov, M.; Hoffmann, J.; Kurinsky, P.; Kuksenko, V.; Vladimirov, P.; Chakin, V.; Möslang, A.
2016. 16th European Microscopy Congress (EMC 2016), Lyon, F, August 28 - September 2, 2016. Abstracts publ.online, MS-05–820. doi:10.1002/9783527808465.EMC2016.6366
TEM characterization of irradiated beryllium
Klimenkov, M.; Hoffmann, J.; Kurinsky, P.; Kuksenko, V.; Vladimirov, P.; Chakin, V.; Möslang, A.
2016. 16th European Microscopy Congress (EMC 2016), Lyon, F, August 28 - September 2, 2016
Nanostructure evolution in ODS steels under ion irradiation
Rogozhkin, S.; Bogachev, A.; Korchuganova, O.; Nikitin, A.; Orlov, N.; Aleev, A.; Zaluzhnyi, A.; Kozodaev, M.; Kulevoy, T.; Chalykh, B.; Lindau, R.; Hoffmann, J.; Möslang, A.; Vladimirov, P.; Klimenkov, M.; Heilmaier, M.; Wagner, J.; Seils, S.
2016. Nuclear materials and energy, 9, 66–74. doi:10.1016/j.nme.2016.06.011
Development of EAM Fe-Y interaction potential towards simulation of ODS particles in iron
Vladimirov, P.; Möslang, A.; Koch, S.
2016. 13th Conference on Computer Simulation of Radiation Effects in Solids (COSIRES), Loughborough, GB, June 19-24, 2016
Shape of hydrogen-covered bubbles in beryllium: ab initio study
Bachurin, D.; Vladimirov, P.
2016. 2nd International Workshop on Models and Data for Plasma-Material Interaction in Fusion Devices (MoD-PMI 2016), Loughborough, GB, June 22-24, 2016
Development of EAM Fe-Y interaction potential
Vladimirov, P.; Möslang, A.; Koch, S.
2016. 8th Multiscale Materials Modeling (MMM) International Conference, Dijon, F, October 9-14, 2016
Elastic moduli of nanocrystalline binary Al alloys with Fe, Co, Ti, Mg and Pb alloying elements
Babicheva, R. I.; Bachurin, D. V.; Dmitriev, S. V.; Zhang, Y.; Kok, S.; Bai, L.; Zhou, K.
2016. The philosophical magazine, 96 (15), 1598–1612. doi:10.1080/14786435.2016.1171416
Investigation of microstructure changes in ODS-EUROFER after hydrogen loading
Emelyanova, O. V.; Ganchenkova, M. G.; Malitskii, E.; Yagodzinskyy, Y. N.; Klimenkov, M.; Borodin, V. A.; Vladimirov, P. V.; Lindau, R.; Möslang, A.; Hänninen, H.
2016. Journal of nuclear materials, 468, 355–359. doi:10.1016/j.jnucmat.2015.07.053
Tritium release from advanced beryllium materials after loading by tritium/hydrogen gas mixture
Chakin, V.; Rolli, R.; Moeslang, A.; Kurinskiy, P.; Vladimirov, P.; Dorn, C.; Kupriyanov, I.
2016. Fusion engineering and design, 107 (Jun), 75–81. doi:10.1016/j.fusengdes.2016.04.018
Drift of dislocation tripoles under ultrasound influence
Murzaev, R. T.; Bachurin, D. V.; Nazarov, A. A.
2016. Ultrasonics, 64, 77–82. doi:10.1016/j.ultras.2015.08.001
Modeling hydrogen ad- and desorption on beryllium-(0001)-surface
Stihl, C.; Bachurin, D.; Vladimirov, P.
2015. 12th International Conference on the Mechanical Behavior of Materials (ICM-12), Karlsruhe, May 10-14, 2015
Multiscale modeling of hydrogen behavior on beryllium-(0001)-surface
Stihl, C.; Bachurin, D.; Vladimirov, P.; Möslang, A.
2015. 17th International Conference on Fusion Reactor Materials, Aachen, October 12- 16, 2015
Tritium release from highly neutron irradiated constrained and unconstrained beryllium pebbles
Chakin, V.; Rolli, R.; Vladimirov, P.; Möslang, A.
2015. Fusion engineering and design, 95, 59–66. doi:10.1016/j.fusengdes.2015.04.027
Tritium and helium release from highly neutron irradiated titanium beryllide
Chakin, V.; Rolli, R.; Möslang, A.; Kurinskiy, P.
2015. Fusion engineering and design, 98-99, 1728–1732. doi:10.1016/j.fusengdes.2015.01.038
Ab-initio study of hydrogen on beryllium surfaces
Bachurin, D. V.; Vladimirov, P. V.
2015. Proceedings of the 11th IEA International Workshop on Beryllium Technology (BeWS-11), Barcelona, Spain, 12-13 September 2013., 159–168, KIT Scientific Publishing
Interaction of dislocation tripoles with a standing sound wave
Murzaev, R. T.; Bachurin, D. V.; Nazarov, A. A.
2015. The physics of metals and metallography, 116 (10), 1057–1065. doi:10.1134/S0031918X15100105
Ab initio study of hydrogen on beryllium surfaces
Bachurin, D. V.; Vladimirov, P. V.
2015. Surface science, 641, 198–203. doi:10.1016/j.susc.2015.07.008
Nanostructure evolution in ODS steels under ion irradiation
Rogozhkin, S.; Bogachev, A.; Korchuganova, O.; Nikitin, A.; Orlov, N.; Aleev, A.; Zaluzhnyi, A.; Kulevoy, T.; Chalykh, B.; Lindau, R.; Möslang, A.; Vladimirov, P.; Klimenkov, M.; Heilmaier, M.; Wagner, J.; Seils, S.
2015. 17th International Conference on Fusion Reactor Materials, Aachen, October 12- 16, 2015
Hydrogen driven microstructural changes of ODS-EUROFER under tensile loading
Emelyanova, O. V.; Ganchenkova, M. G.; Malitskiy, E.; Yagodzinskyy, Y. N.; Klimenkov, M.; Borodin, V. A.; Vladimirov, P. V.; Lindau, R.; Dzhumaev, P. S.; Möslang, A.; Hanninen, H.
2015. 17th International Conference on Fusion Reactor Materials, Aachen, October 12- 16, 2015
TEM study of impurity segregations in beryllium pebbles
Klimenkov, M.; Chakin, V.; Möslang, A.; Rolli, R.
2014. Journal of nuclear materials, 455, 660–664. doi:10.1016/j.jnucmat.2014.08.030
Materials research for energy supply at Karlsruhe Institute of Technology
Krüssmann, R.; Gräning, T.; Janda, D.; Ruck, S.; Schneider, D.; Strassberger, L.; Vladimirov, P.; Yurechko-Hussy, M.
2015. Energy, Science and Technology, Conference and Exhibition (EST 2015), Karlsruhe, Deutschland, 20.–22. Mai 2015
Modelling of hydrogen interactions with beryllium surfaces in fusion reactor
Vladimirov, P.; Bachurin, D.; Stihl, C.
2015. International workshop on Models and Data for Plasma-Material Interaction in Fusion Devices (MoD-PMI 2015), Marseille, F, May 25-27, 2015
Effect of heavy-ion irradiation on the nanoscale state of advanced reactor ferritic-martensitic steels
Bogachev, A.; Rogozhkin, S.; Aleev, A.; Chalykh, B.; Kulevoy, T.; Kuibeda, R.; Nikitin, A.; Orlov, N.; Zaluzhnyi, A.; Golubev, A. A.; Vladimirov, P.; Möslang, A.
2014. Junior Euromat 2014, Lausanne, CH, July 21-25, 2014
Hydrogen effects on tensile properties of EUROFER 97 and ODS-EUROFER steels
Yagodzinskyy, Y.; Malitckii, E.; Ganchenkova, M.; Binyukova, S.; Emelyanova, O.; Saukkonen, T.; Hänninen, H.; Lindau, R.; Vladimirov, P.; Moeslang, A.
2014. Journal of nuclear materials, 444, 435–440. doi:10.1016/j.jnucmat.2013.10.026
Current status of beryllium materials for fusion blanket applications
Vladimirov, P.; Bachurin, D.; Borodin, V.; Chakin, V.; Ganchenkova, M.; Fedorov, A.; Klimenkov, M.; Kupriyanov, I.; Moeslang, A.; Nakamichi, M.; Shibayama, T.; Van Til, S.; Zmitko, M.
2014. Fusion science and technology, 66, 28–37. doi:10.13182/FST13-776
Mechanical compression tests of beryllium pebbles after neutron irradiation up to 3000 appm helium production
Chakin, V.; Rolli, R.; Moeslang, A.; Zmitko, M.
2015. Fusion engineering and design, 93, 36–42. doi:10.1016/j.fusengdes.2015.02.019
Microstructure of out-of-pile annealed neutron irradiated beryllium studied by X-ray tomography
Vladimirov, P.; Ferrero, C.; Chakin, V.; Kurinskiy, P.; Moeslang, A.; Pieritz, R.; Weitkamp, T.; Brun, E.
2015. Acta materialia, 88, 293–301. doi:10.1016/j.actamat.2015.01.045
Nanostructure evolution in ODS Eurofer steel under irradiation up to 32 dpa
Rogozhkin, S. V.; Orlov, N. N.; Aleev, A. A.; Zaluzhnyi, A. G.; Kozodaev, M. A.; Kuibeda, R. P.; Kulevoy, T. V.; Nikitin, A. A.; Chalykh, B. B.; Lindau, R.; Möslang, A.; Vladimirov, P.
2015. The physics of metals and metallography, 116, 72–78. doi:10.1134/S0031918X15010093
Nanoscale characterization of 13.5% Cr oxide dispersion strengthened steels with various titanium concentrations
Rogozhkin, S. V.; Orlov, N. N.; Nikitin, A. A.; Aleev, A. A.; Zaluzhnyi, A. G.; Kozodaev, M. A.; Lindau, R.; Möslang, A.; Vladimirov, P.
2015. Inorganic materials / Applied research, 6, 151–155. doi:10.1134/S2075113315020136
Materials research for energy supply at Karlsruhe Institute of Technology
Krüssmann, R.; Gräning, T.; Janda, D.; Ruck, S.; Schneider, D.; Strassberger, L.; Vladimirov, P.; Yurechko-Hussy, M.
2015. Energy, Science and Technology, Conference and Exhibition (EST 2015), Karlsruhe, Deutschland, 20.–22. Mai 2015
Characterization of dislocation loops in ferritic martensitic steels irradiated within the SPICE programme
Hoffmann, J.; Klimenkov, M.; Vladimirov, P.
2014. NuMat 2014: The Nuclear Materials Conference, Clearwater, Fla., October 27-30, 2014
Radiation damage in beryllium pebbles after high-temperature exposure at HFR up to 3000 appm helium production
Chakin, V.; Möslang, A.; Klimenkov, M.; Rolli, R.
2014. Scientific Conference ’New Materials for Innovative Development of Nuclear Power Engineering’, Dimitrovgrad, Russia, March 24-27, 2014
TEM characterization of beryllium pebbles after neutron-irradiation up to 3000 appm of helium production (HIDOBE-01)
Klimenkov, M.; Chakin, V.; Möslang, A.; Rolli, R.
2013. 11th IEA International Workshop on Beryllium Technology (BeWS 2013), Barcelona, E, September 12-13, 2013
TEM study of neutron irradiated beryllium pebbles
Klimenkov, M.; Chakin, V.; Möslang, A.; Rolli, R.
2013. 16th International Conference on Fusion Reactor Materials (ICFRM-16), Beijing, China, October 20-26, 2013
TEM study of beryllium pebbles after neutron irradiation up to 3000 appm helium production
Klimenkov, M.; Chakin, V.; Möslang, A.; Rolli, R.
2013. Journal of Nuclear Materials, 443, 409–416. doi:10.1016/j.jnucmat.2013.07.050
Characteristics of microstructure, swelling and mechanical behaviour of titanium beryllide samples after high-dose neutron irradiation at 740 and 873 K
Kurinskiy, P.; Moeslang, A.; Chakin, V.; Klimenko, M.; Rolli, R.; Til, S. van; Goraieb, A. A.
2013. Fusion Engineering and Design, 88, 2198–2201. doi:10.1016/j.fusengdes.2013.05.084
Characterization of constrained beryllium pebble beds after neutron irradiation at HFR at high temperatures up to helium production of 3000 appm
Chakin, V.; Rolli, R.; Moeslang, A.; Vladimirov, P.; Kurinskiy, P.; Til, S. van; Magielsen, A. J.; Zmitko, M.
2013. Fusion Engineering and Design, 88, 2309–2313. doi:10.1016/j.fusengdes.2013.04.034
Tritium release retention properties of highly neutron-irradiated beryllium pebbles from HIDOBE-01 experiment
Chakin, V.; Rolli, R.; Moeslang, A.; Klimenkov, M.; Kolb, M.; Vladimirov, P.; Kurinskiy, P.; Schneider, H. C.; Til, S. van; Magielsen, A. J.; Zmitko, M.
2013. Journal of Nuclear Materials, 442 (Suppl. 1), S483-S489. doi:10.1016/j.jnucmat.2013.03.032
X-ray study of surface layers of air-annealed Be₁₂Ti and Be₁₂V samples using synchrotron radiation
Kurinskiy, P.; Moeslang, A.; Chakin, V.; Slobodskyy, T.; Minkevich, A. A.; Baumbach, T.; Dorn, C.; Goraieb, A. A.
2012. Fusion Engineering and Design, 87, 872–875. doi:10.1016/j.fusengdes.2012.02.047
Tomographic atom probe study of un- and irradiated ODS EUROFER steel
Rogozhkin, S.; Aleev, A.; Klimenkov, M.; Lindau, R.; Möslang, A.; Nikitin, A.; Vladimirov, P.; Zaluzhnyi, A.
2012. 2nd Joint IAEA - EC Topical Meeting on Development of New Structural Materials for Advanced Fission and Fusion Reactor Systems, Ispra, I, April 16-20, 2012
Investigations of high concentration of helium atoms effects on microstructure and mechanical property changes in EUROFER ODS materials
Ryazanov, A. I.; Chugonov, O. K.; Latushkin, S. T.; Lindau, R.; Möslang, A.; Prikhodko, K. E.; Semenov, E. V.; Unezhev, V. N.; Vladimirov, P.
2012. 15th Internat.Conf.on Fusion Reactor Materials, Charleston, S.C., October 16-22, 2011
Role of He in swelling of neutron irradiated beryllium
Vladimirov, P.; Borodin, V.
2012. 10th IEA Internat.Workshop on Beryllium Technology, Karlsruhe, September 19-21, 2012
Comparative study of hydrogen uptake and diffusion in ODS steels
Malitckii, E.; Yagodzinskyy, Y.; Ganchenkova, M.; Binyukova, S.; Hänninen, H.; Lindau, R.; Vladimirov, P.; Möslang, A.
2012. 27th Symp.on Fusion Technology (SOFT 2012), Liege, B, September 24-28, 2012
Morpho-topological volume analysis of porous materials for nuclear applications
Pieritz, R.; Spino, J.; Vladimirov, P.; Ferrero, C.
2012. International Journal of Materials Research, 103, 250–257. doi:10.3139/146.110670
X-ray phase contrast and fluorescence nanotomography for material studies
Suhonen, H.; Xu, F.; Helfen, L.; Ferrero, C.; Vladimirov, P.; Cloetens, P.
2012. International Journal of Materials Research, 103, 179–183. doi:10.3139/146.110664
XAFS and TEM studies of the structural evolution of yttrium-enriched oxides in nanostructured ferritic alloys fabricated by a powder metallurgy process
He, P.; Liu, T.; Möslang, A.; Lindau, R.; Ziegler, R.; Hoffmann, J.; Kurinskiy, P.; Commin, L.; Vladimirov, P.; Nikitenko, S.; Silveir, M.
2012. Materials Chemistry and Physics, 136, 990–998. doi:10.1016/j.matchemphys.2012.08.038
Atom probe tomography of nanoscaled features of oxide-dispersion-strengthened ODS Eurofer steel in the initial state and after neutron irradiation
Rogozhkin, S. V.; Aleev, A. A.; Zaluzhnyi, A. G.; Iskanderov, N. A.; Nikitin, A. A.; Vladimirov, P.; Lindau, R.; Möslang, A.
2012. The physics of metals and metallography, 113 (1), 98–105. doi:10.1134/S0031918X12010103
Thermal conductivity of highly neutron-irradiated beryllium in nuclear fusion reactors
Chakin, V.; Reimann, J.; Moeslang, A.; Latypov, R.; Obukhov, A.
2012. Progress in Nuclear Energy, 57, 2–7. doi:10.1016/j.pnucene.2011.11.011
The effects of temperature on crack propagation in Bcc iron
Borodin, V. A.; Vladimirov, P. V.; Moeslang, A.
2011. 15th Internat.Conf.on Fusion Reactor Materials, Charleston, S.C., October 16-22, 2011
Ab initio static and molecular dynamics studies of helium behavior in beryllium
Vladimirov, P. V.; Moeslang, A.
2011. 15th Internat.Conf.on Fusion Reactor Materials, Charleston, S.C., October 16-22, 2011
Molecular dynamics simulations of quasi-brittle crack development in iron
Borodin, V. A.; Vladimirov, P. V.
2011. Journal of Nuclear Materials, 415, 320–328. doi:10.1016/j.jnucmat.2011.04.052
Modeling of yttrium, oxygen atoms and vacancies in γ-iron lattice
Gopejenko, A.; Zhukovskii, Y. F.; Vladimirov, P. V.; Kotomin, E. A.; Möslang, A.
2011. Journal of Nuclear Materials, 416, 40–44. doi:10.1016/j.jnucmat.2010.11.088
Three-dimensional atomistic modelig of microcrack propagation in iron
Borodin, V. A.; Vladimirov, P. V.
2011. Journal of Nuclear Materials, 416, 49–54. doi:10.1016/j.jnucmat.2010.12.224
Study of helium bubble evolution in highly neutron-irradiated beryllium by using X-ray micro tomography and metallography methods
Chakin, V.; Rolli, R.; Moeslang, A.; Kurinskiy, P.; Vladimirov, P.; Ferrero, C.; Pieritz, R.; Renterghem, W. van
2011. Physica Scripta, T145, 014012/1–6. doi:10.1088/0031-8949/2011/T145/014012
Microstructural and tritium release examination of titanium beryllides
Chakin, V.; Klimenkov, M.; Rolli, R.; Kurinskiy, P.; Moeslang, A.; Dorn, C.
2011. Journal of Nuclear Materials, 417, 769–774. doi:10.1016/j.jnucmat.2010.12.142
Comparative study of fusion relevant properties of Be₁₂V and Be₁₂Ti
Kurinskiy, P.; Moeslang, A.; Chakin, V.; Rolli, R.; Alves, E.; Alves, L. C.; Franco, N.; Dorn, C.; Goraieb, A. A.
2011. 26th Symp.on Fusion Technology (SOFT 2010), Porto, P, September 27 - October 1, 2010
Tritiumpermeation, retention and release properties of beryllium pebbles
Chakin, V.; Möslang, A.; Kurinskiy, P.; Rolli, R.; Schneider, H. C.; Alves, E.; Alves, L. C.
2011. 26th Symp.on Fusion Technology (SOFT 2010), Porto, P, September 27 - October 1, 2010
Tritium release and retention properties of highly neutron irradiated beryllium pebbles from HIDOBE-01 experiment
Chakin, V.; Moeslang, A.; Vladimirov, P.; Kurinskiy, P.; Rolli, R.; Schneider, H. C.; Til, S. van; Hegeman, J. B. J.; Zmitko, M.
2011. 15th Internat.Conf.on Fusion Reactor Materials, Charleston, S.C., October 16-22, 2011
Comparative study of fusion relevant properties of Be₁₂V and Be₁₂Ti
Kurinskiy, P.; Chakin, V.; Moeslang, A.; Rolli, R.; Alves, E.; Alves, L. C.; Franco, N.; Dorn, C.; Goraieb, A. A.
2011. Fusion Engineering and Design, 86, 2454–2457. doi:10.1016/j.fusengdes.2010.12.065
Pores and cracks in highly neutron irradiated beryllium
Chakin, V.; Rolli, R.; Schneider, H. C.; Moeslang, A.; Kurinskiy, P.; Renterghem, W. van
2011. Journal of Nuclear Materials, 416, 3–8. doi:10.1016/j.jnucmat.2010.11.098
Tritium permeation, retention and release properties of beryllium pebbles
Chakin, V.; Möslang, A.; Kurinskiy, P.; Rolli, R.; Schneider, H. C.; Alves, E.; Alves, L. C.
2011. Fusion Engineering and Design, 86, 2338–2342. doi:10.1016/j.fusengdes.2011.01.091
TEM study of irradiation induced copper precipitation in boron alloyed EUROFER97 steel
Klimenkov, M.; Vladimirov, P.; Möslang, A.; Materna-Morris, E.; Schneider, H. C.
2011. International Journal of Materials Research, 102, 1089–1093. doi:10.3139/146.110570
Atom probe characterization of nano-scaled features in irradiated ODS Eurofer steel
Rogozhkin, S. V.; Aleev, A. A.; Zaluzhnyi, A. G.; Nikitin, A. a.; Iskandarov, N. A.; Vladimirov, P.; Lindau, R.; Möslang, A.
2011. Journal of Nuclear Materials, 409, 94–99. doi:10.1016/j.jnucmat.2010.09.021
Investigation of oxide particles in unirradiated ODS Eurofer by tomographic atom probe
Aleev, A. A.; Iskandarov, N. A.; Klimenkov, M.; Lindau, R.; Möslang, A.; Nikitin, A. A.; Rogozhkin, S. V.; Vladimirov, P.; Zaluzhnyi, A. G.
2011. Journal of Nuclear Materials, 409, 65–71. doi:10.1016/j.jnucmat.2010.09.008