Data Science and Scientific Workflows
- type: Lecture / Practice (VÜ)
- chair: KIT Department of Mechanical Engineering
- semester: SS 2024
-
time:
Wed 2024-04-17
14:00 - 15:30, weekly
10.81 Emil-Mosonyi-Seminarraum (HS 62)
10.81 Bauingenieure, Altes Bauingenieurgebäude (1. OG)
Thu 2024-04-18
15:45 - 17:15, weekly
20.21 Pool G
20.21 Kollegiengebäude am Zirkel, Teil 2 (SCC) (UG)
Wed 2024-04-24
14:00 - 15:30, weekly
10.81 Emil-Mosonyi-Seminarraum (HS 62)
10.81 Bauingenieure, Altes Bauingenieurgebäude (1. OG)
Thu 2024-04-25
15:45 - 17:15, weekly
20.21 Pool G
20.21 Kollegiengebäude am Zirkel, Teil 2 (SCC) (UG)
Thu 2024-05-02
15:45 - 17:15, weekly
20.21 Pool G
20.21 Kollegiengebäude am Zirkel, Teil 2 (SCC) (UG)
Wed 2024-05-08
14:00 - 15:30, weekly
10.81 Emil-Mosonyi-Seminarraum (HS 62)
10.81 Bauingenieure, Altes Bauingenieurgebäude (1. OG)
Wed 2024-05-15
14:00 - 15:30, weekly
10.81 Emil-Mosonyi-Seminarraum (HS 62)
10.81 Bauingenieure, Altes Bauingenieurgebäude (1. OG)
Thu 2024-05-16
15:45 - 17:15, weekly
20.21 Pool G
20.21 Kollegiengebäude am Zirkel, Teil 2 (SCC) (UG)
Wed 2024-05-29
14:00 - 15:30, weekly
10.81 Emil-Mosonyi-Seminarraum (HS 62)
10.81 Bauingenieure, Altes Bauingenieurgebäude (1. OG)
Wed 2024-06-05
14:00 - 15:30, weekly
10.81 Emil-Mosonyi-Seminarraum (HS 62)
10.81 Bauingenieure, Altes Bauingenieurgebäude (1. OG)
Thu 2024-06-06
15:45 - 17:15, weekly
20.21 Pool G
20.21 Kollegiengebäude am Zirkel, Teil 2 (SCC) (UG)
Wed 2024-06-12
14:00 - 15:30, weekly
10.81 Emil-Mosonyi-Seminarraum (HS 62)
10.81 Bauingenieure, Altes Bauingenieurgebäude (1. OG)
Thu 2024-06-13
15:45 - 17:15, weekly
20.21 Pool G
20.21 Kollegiengebäude am Zirkel, Teil 2 (SCC) (UG)
Wed 2024-06-19
14:00 - 15:30, weekly
10.81 Emil-Mosonyi-Seminarraum (HS 62)
10.81 Bauingenieure, Altes Bauingenieurgebäude (1. OG)
Thu 2024-06-20
15:45 - 17:15, weekly
20.21 Pool G
20.21 Kollegiengebäude am Zirkel, Teil 2 (SCC) (UG)
Wed 2024-06-26
14:00 - 15:30, weekly
10.81 Emil-Mosonyi-Seminarraum (HS 62)
10.81 Bauingenieure, Altes Bauingenieurgebäude (1. OG)
Thu 2024-06-27
15:45 - 17:15, weekly
20.21 Pool G
20.21 Kollegiengebäude am Zirkel, Teil 2 (SCC) (UG)
Wed 2024-07-03
14:00 - 15:30, weekly
10.81 Emil-Mosonyi-Seminarraum (HS 62)
10.81 Bauingenieure, Altes Bauingenieurgebäude (1. OG)
Thu 2024-07-04
15:45 - 17:15, weekly
20.21 Pool G
20.21 Kollegiengebäude am Zirkel, Teil 2 (SCC) (UG)
Wed 2024-07-10
14:00 - 15:30, weekly
10.81 Emil-Mosonyi-Seminarraum (HS 62)
10.81 Bauingenieure, Altes Bauingenieurgebäude (1. OG)
Thu 2024-07-11
15:45 - 17:15, weekly
20.21 Pool G
20.21 Kollegiengebäude am Zirkel, Teil 2 (SCC) (UG)
Wed 2024-07-17
14:00 - 15:30, weekly
10.81 Emil-Mosonyi-Seminarraum (HS 62)
10.81 Bauingenieure, Altes Bauingenieurgebäude (1. OG)
Thu 2024-07-18
15:45 - 17:15, weekly
20.21 Pool G
20.21 Kollegiengebäude am Zirkel, Teil 2 (SCC) (UG)
Wed 2024-07-24
14:00 - 15:30, weekly
10.81 Emil-Mosonyi-Seminarraum (HS 62)
10.81 Bauingenieure, Altes Bauingenieurgebäude (1. OG)
Thu 2024-07-25
15:45 - 17:15, weekly
20.21 Pool G
20.21 Kollegiengebäude am Zirkel, Teil 2 (SCC) (UG)
-
lecturer:
Dr. Daniel Weygand
Prof. Dr. Peter Gumbsch - sws: 3
- lv-no.: 2182741
- information: On-Site
Content | The amount of data generated in scientific projects is increasing rapidly. The increase is partly due to the fact that new data-based evaluation methods allow a better and more precise analysis of scientific data. In addition, the linking of data provides new insights. This requires a systematic organization of data. The necessary knowledge of data science and computer science is equally required for both computer simulations and experimental investigations. The preparation/classification (e.g. electronic laboratory notebook) and structuring of data is a necessary step for their reuse. The lecture introduces the principles and software tools for the corresponding scientific workflows: Python and libraries, Jupyter notebook, shell scripts and documentation with git-tools. Furthermore, an overview is given of database systems in materials research and the FAIR data principle (findability, accessibility, interoperability and reusability).
Objective:
Students will be able to - organize and document data electronically - handle data formats: simple, hierarchical ones - deal with software management tools (git, gitlab) - record scientific workflows in detail and ensure traceability - use python-based libraries for data handling and analyses
Detailed lecture content:
Exercise: The lecture material will be deepened in the exercises (exercise 1SWS).
Mode of examination:
|
Language of instruction | German |
Bibliography | Literatur:
|