Particle Dynamics and Atomistic Simulation

Content

Particle-based methods are numerical techniques used to simulate and analyse systems consisting of many discrete particles. They are particularly useful in fields where traditional continuum mechanical approaches are insufficient, such as granular materials, complex fluids, and defects in solids. In the lecture, the Discrete Element Method (DEM) for particles and Molecular Dynamics (MD) for the atomistic description of material behaviour will be covered. These methods span different length and time scales.

  1. Introduction to Particle-Based Methods
    a) 
    origin and application
    b) classification of particle-based methods
  2.  Fundamentals of Particle Dynamics
    a) Newtonian mechanics and conservation laws
    b) contact mechanics and friction laws
    c) kinematics and dynamics of particles
  3.  Discrete Element Method (DEM)
    a) 
    principles and fundamentals
    b) 
    numerical implementation: discretizing space and time
    c) particle detection and contact modelling
    d) application examples
  4. Atomistic Methods: Molecular Dynamics (MD) and Statics (MS)
    a) fundamentals of atomistic models
    b) interaction: interatomic potentials
      
       i.     pair potentials and their limits
       
    ii.     many-body potentials
    c) integration methods (e.g., Verlet, Leap-Frog)
    d) 
    periodic boundary conditions and neighbour lists
    e) applications in materials science
  5. Structural Analysis:
    a) classification of neighbourhoods, distribution functions
    b) defect energy
    c) stresses, strains
  6. Statistical Aspects of Atomistic Models
    a) phase space
    b) physical ensembles: microcanonical, canonical, grand canonical
    c) control of temperature, pressure, stresses: thermostats and barostats
    d) fluctuations and physical properties

The lecture covers both fundamental and advanced aspects of particle-based methods, with a particular focus on simple atomistic approaches. The accompanying computer exercises are designed to deepen and complement the lecture content through practical examples using the freely available particle simulation tool "LAMMPS" and to serve as a forum for detailed questions from students.

 

Objective: The student will be able to

  • explain the physical principles of particle-based simulations,
  • describe the application areas of particle-based simulation methods,
  • apply particle-based simulation methods to address problems in materials science, materials engineering, and process engineering.

Recommended Prerequisites: mathematics, physics, and materials science

Lecture:  22.5 hours

Exercises: 12 hours

Self-study: 85.5 hours

 

Oral exam: approximately 30 minutes

Language of instructionEnglish
Bibliography
  1. Understanding Molecular Simulation: From Algorithms to Applications, Daan Frenkel and Berend Smit (Academic Press, 2001) wie alle guten MD Bücher stark aus dem Bereich der physikalischen Chemie motiviert und auch aus diesem Bereich mit Anwendungsbeispielen gefüllt, trotzdem für mich das beste Buch zum Thema!
  2. Computer simulation of liquids, M. P. Allen and Dominic J. Tildesley (Clarendon Press, Oxford, 1996) Immer noch der Klassiker zu klassischen MD Anwendungen. Weniger stark im Bereich der Nichtgleichgewichts-MD.
  3. Computational Granular Dynamics. T. Pöschel, T. Schwager, Springer, 2005. Diskrete Element Methoden. 
  4. Lecture Slides and Exercises.
Organisational issues

Die Vorlesung wird auf Englisch angeboten!