Group Department

 

Graues Hintergrundbild
Gas Corrosion

The Gas Corrosion Group develops new alloy systems for high-temperature materials using thermodynamic modelling. We carry out corrosion tests in different oxidizing gases at 1000 °C and above, as well as advanced microstructure investigations. By developing materials that are stable under extreme conditions, our research contributes to increasing the efficiency of high-temperature energy conversion.

Group

Gaskorrosion

Graues Hintergrundbild
Liquid Metal Technology

The Liquid Metal Technology Group deals with the interactions between liquid metals and materials. We also develop methods for measuring and controlling non-metals dissolved in liquid metals as well as material coatings for use in liquid metals. With the qualification and targeted improvement of materials, we are opening up new fields of application for liquid metals.

Group

Flüssigmetalltechnologie

The availability of materials that are compatible with the operating conditions is a prerequisite for the reliable and economical implementation of processes in industrial plants and machines. Undesirable interactions between the materials and the process environment as well as advantageous material behaviour need to be understood on a mechanistic level and quantified. When established concepts reach their limits, new approaches must be developed, including new material classes or material composites. Our tools include thermodynamic modelling of alloy systems, testing equipment adapted to the process-specific loads, and modern materialography. Our work is currently focussed on gas corrosion and material interactions with liquid metals.

Publication


Corrections to “High-Performance Modulators Employing Organic Electro-Optic Materials on the Silicon Platform”
Freude, W.; Kotz, A.; Kholeif, H.; Schwarzenberger, A.; Kuzmin, A.; Eschenbaum, C.; Mertens, A.; Sarwar, S.; Erk, P.; Bräse, S.; Koos, C.
2025. IEEE Journal of Selected Topics in Quantum Electronics, 31 (2: Pwr. a…Scaling in), Art.-Nr. 9800101. doi:10.1109/JSTQE.2025.3546113
Modeling Oxygen Loss and Phase Transformation in Ni‐Rich Cathode Materials: Impact of Electrode Microstructure
Both, S.; Hein, S.; Danner, T.; Latz, A.
2025. Batteries & Supercaps, 8 (8), Art.-Nr. e202400802. doi:10.1002/batt.202400802
Sustainable aviation fuel production via the methanol pathway: a technical review
Elwalily, A.; Verkama, E.; Mantei, F.; Kaliyeva, A.; Pounder, A.; Sauer, J.; Nestler, F.
2025. Sustainable Energy & Fuels, 9 (19), 5151–5180. doi:10.1039/d5se00231a
Ultraslow Relaxation of Toroidal State in Ferrotoroidal Dysprosium Complex
Chauhan, D.; Paul, S.; Borah, D.; Sunil, A.; Wernsdorfer, W.; Shanmugam, M.; Rajaraman, G.
2025. Journal of the American Chemical Society, 147 (43), 39572–39581. doi:10.1021/jacs.5c12742
Interlaboratory Study of Sample Homogeneity Impact on CHNS, Water, and ICP Analysis of Biomass Liquefaction Oils
Bulsink, P.; Nguyen, L.; Gupta, M.; Collard, F.-X.; Funke, A.; Jeaidi, J.; Bronson, B.
2025. Energy & Fuels, 39 (29), 14223–14236. doi:10.1021/acs.energyfuels.5c01309
Interaction of Trivalent An(III) with Glenium 51: The Effect of Ionic Strength
Özyagan, S.; Sittel, T.; Skerencak-Frech, A.; Panak, P. J.
2025. Inorganic Chemistry, 64 (44), 22073–22081. doi:10.1021/acs.inorgchem.5c03814
Serpent 2 simulations of the historic Haigerloch B8 nuclear reactor of 1945
Wiesenmüller, J.; Huaccho Zavala, G.; Buck, M.; Thorwart, M.
2025. Kerntechnik. doi:10.1515/kern-2025-0045
Elektrifizierung der chemischen Industrie: Eine spannende Herausforderung entlang Skalen und Prozessketten
Freund, H.; Sauer, J.; Ehrhardt, K.
2025. Chemie Ingenieur Technik, 97 (5), 363 – 363. doi:10.1002/cite.202500048
Magnetic sensing modules for in-vivo blood pressure monitoring in anastomosed arteries
Aslan, M. F.; Navruz, T. S.; Beyaz, M. İ.
2025. Sensors and Actuators A: Physical, 396, Art.-Nr. 117204. doi:10.1016/j.sna.2025.117204


Contact person

Dr. Carsten Schroer
Head of Corrosion Department

+49 721 608-24840
carsten.schroer∂kit.edu