
The Gas Corrosion Group develops new alloy systems for high-temperature materials using thermodynamic modelling. We carry out corrosion tests in different oxidizing gases at 1000 °C and above, as well as advanced microstructure investigations. By developing materials that are stable under extreme conditions, our research contributes to increasing the efficiency of high-temperature energy conversion.
Group
The Liquid Metal Technology Group deals with the interactions between liquid metals and materials. We also develop methods for measuring and controlling non-metals dissolved in liquid metals as well as material coatings for use in liquid metals. With the qualification and targeted improvement of materials, we are opening up new fields of application for liquid metals.
GroupThe availability of materials that are compatible with the operating conditions is a prerequisite for the reliable and economical implementation of processes in industrial plants and machines. Undesirable interactions between the materials and the process environment as well as advantageous material behaviour need to be understood on a mechanistic level and quantified. When established concepts reach their limits, new approaches must be developed, including new material classes or material composites. Our tools include thermodynamic modelling of alloy systems, testing equipment adapted to the process-specific loads, and modern materialography. Our work is currently focussed on gas corrosion and material interactions with liquid metals.
Publication
Tadson, B.; Mädche, A.
2026. Information Systems and Neuroscience – NeuroIS Retreat 2025, Vienna, Austria. Ed.: F. Davis, 259–270, Springer Nature Switzerland. doi:10.1007/978-3-032-00815-2_24
Al-Wahaibi, L. H.; Abou-Zied, H. A.; Nieger, M.; Bräse, S.; Youssif, B. G. M.; Tawfeek, H. N.
2025. Frontiers in Chemistry, 13. doi:10.3389/fchem.2025.1748491
Ekman, A.; Ekman, A. A.; Chen, J.-H.; Larabell, C. A.; Gros, M. A. L.; Weinhardt, V.
2025. Physica Scripta, 100 (12), 126008. doi:10.1088/1402-4896/ae26f9
Schukraft, J.; Fünkner, M.; Zhang, F.; Liu, H.; Wilhelm, M. L.; Kaptur, L.; Henning, F.; Hrymak, A. N.
2025. Journal of Thermoplastic Composite Materials. doi:10.1177/08927057251412780
Gruber, J. R.; Schiweck, C.; Ruf, A.; Süß, E. D.; Japtok, P.; Schouler, N.; Edwin Thanarajah, S.; Reif, A.; Matura, S.
2025. Scientific Reports, 15 (1), 44417. doi:10.1038/s41598-025-32454-4
Xing, Z.; Li, Y.; Dai, Y.; Wei, J.; Ma, M.; Zhang, X.; Gao, H.; Kunstmann, H.
2026. Weather and Climate Extremes, 51, 100847. doi:10.1016/j.wace.2025.100847
Almanza Soto, M.; Borysov, O.; Ferber, T.; Huang, S.; Irles, A.; Klute, M.; Márquez Hernández, J. P.; Pérez Segura, J.; Quishpe, R.; Soreq, Y.; Tal Hod, N.; Trevisani, N.
2025. Physical Review D, 112 (11), 112014. doi:10.1103/n2nh-7v5b
Wicke, T.; Weymann, L.; Neef, C.; Tübke, J.
2025. BATTERIES-BASEL, 11 (12), 457. doi:10.3390/batteries11120457
Capucha, R.; Elyaouti, K.; Mühlleitner, M.; Plotnikov, J.; Santos, R.
2026. Computer Physics Communications, 320, 109968. doi:10.1016/j.cpc.2025.109968
Abram, U.; Roca Jungfer, M.
2025. Molecules, 30 (24), 4813. doi:10.3390/molecules30244813


