
The Gas Corrosion Group develops new alloy systems for high-temperature materials using thermodynamic modelling. We carry out corrosion tests in different oxidizing gases at 1000 °C and above, as well as advanced microstructure investigations. By developing materials that are stable under extreme conditions, our research contributes to increasing the efficiency of high-temperature energy conversion.
Group
The Liquid Metal Technology Group deals with the interactions between liquid metals and materials. We also develop methods for measuring and controlling non-metals dissolved in liquid metals as well as material coatings for use in liquid metals. With the qualification and targeted improvement of materials, we are opening up new fields of application for liquid metals.
GroupThe availability of materials that are compatible with the operating conditions is a prerequisite for the reliable and economical implementation of processes in industrial plants and machines. Undesirable interactions between the materials and the process environment as well as advantageous material behaviour need to be understood on a mechanistic level and quantified. When established concepts reach their limits, new approaches must be developed, including new material classes or material composites. Our tools include thermodynamic modelling of alloy systems, testing equipment adapted to the process-specific loads, and modern materialography. Our work is currently focussed on gas corrosion and material interactions with liquid metals.
Publication
Freude, W.; Kotz, A.; Kholeif, H.; Schwarzenberger, A.; Kuzmin, A.; Eschenbaum, C.; Mertens, A.; Sarwar, S.; Erk, P.; Bräse, S.; Koos, C.
2025. IEEE Journal of Selected Topics in Quantum Electronics, 31 (2: Pwr. a…Scaling in), Art.-Nr. 9800101. doi:10.1109/JSTQE.2025.3546113
Both, S.; Hein, S.; Danner, T.; Latz, A.
2025. Batteries & Supercaps, 8 (8), Art.-Nr. e202400802. doi:10.1002/batt.202400802
Elwalily, A.; Verkama, E.; Mantei, F.; Kaliyeva, A.; Pounder, A.; Sauer, J.; Nestler, F.
2025. Sustainable Energy & Fuels, 9 (19), 5151–5180. doi:10.1039/d5se00231a
Chauhan, D.; Paul, S.; Borah, D.; Sunil, A.; Wernsdorfer, W.; Shanmugam, M.; Rajaraman, G.
2025. Journal of the American Chemical Society, 147 (43), 39572–39581. doi:10.1021/jacs.5c12742
Bulsink, P.; Nguyen, L.; Gupta, M.; Collard, F.-X.; Funke, A.; Jeaidi, J.; Bronson, B.
2025. Energy & Fuels, 39 (29), 14223–14236. doi:10.1021/acs.energyfuels.5c01309
Christ, N.; Gumbsch, P.; Hohe, J.
2025. Journal of Thermoplastic Composite Materials, 38 (8), 2894–2921. doi:10.1177/08927057251314436
Özyagan, S.; Sittel, T.; Skerencak-Frech, A.; Panak, P. J.
2025. Inorganic Chemistry, 64 (44), 22073–22081. doi:10.1021/acs.inorgchem.5c03814
Wiesenmüller, J.; Huaccho Zavala, G.; Buck, M.; Thorwart, M.
2025. Kerntechnik. doi:10.1515/kern-2025-0045
Freund, H.; Sauer, J.; Ehrhardt, K.
2025. Chemie Ingenieur Technik, 97 (5), 363 – 363. doi:10.1002/cite.202500048
Aslan, M. F.; Navruz, T. S.; Beyaz, M. İ.
2025. Sensors and Actuators A: Physical, 396, Art.-Nr. 117204. doi:10.1016/j.sna.2025.117204


