Head of Deparment: Dr. Michael Rieth
Our research and development work is part of large-scale research and makes an important contribution to energy research at national and European level. As a partner in the Helmholtz Association's energy program and a member of the EUROfusion large-scale research project, we are actively shaping the future of nuclear fusion.
Focus
We develop structural and functional materials that can withstand extreme conditions. These include high temperatures and heat fluxes, as well as high-energy neutron radiation in combination with mechanical, chemical, or time-critical loads. The material properties are tailored by us for each specific application case. In this way, we open up new applications and areas of use in the field of energy conversion. Typical examples include components of a fusion power plant, such as plasma-facing components (divertor), heat exchangers (blanket), and neutron multipliers (tritium breeding elements).
Competence
Our research is application-oriented and, above all, takes place under the aspects of large-scale research. Therefore, alongside sustainability and cost-effectiveness, the focus is particularly on the use of industrial production, forming, joining, and manufacturing technologies. Starting from an idea, our materials development encompasses theoretical modelling, thermodynamic and thermo-mechanical simulations, production in the laboratory and on an industrial scale, experimental characterization of all relevant properties, microstructural and chemical analyses, the manufacturing of prototypes (semi-finished products and mockups), as well as component testing under the respective operating conditions. Our goal is to provide novel materials, including the materials technology process parameters and key characteristics required for production and component manufacturing.
Network
Despite our focus on materials for very specific applications, the boundary conditions, requirements, and properties to be considered are very complex and diverse. So not all necessary investigations and experiments can be carried out within our department. Therefore, we collaborate closely with a variety of partners from KIT, industry, and other research institutions both domestically and internationally. In particular, the characterization and testing of prototypes requires access to large-scale facilities, such as test reactors for neutron irradiation: : HFIR, BR2, or experimental setups for the investigation of plasma-material interactions: HELOKA, ASDEX, GLADIS, JUDITH & JULE-PSI.



Automated modeling and validation
GroupPublicationslist
Dette, H.; Henze, N.
1990. Statistics & Probability Letters, 10 (5), 381–390. doi:10.1016/0167-7152(90)90018-3
Henze, N.
2007. Journal of Nonparametric Statistics, 3 (2), 195–199. doi:10.1080/10485259308832582
Henze, N.; Klein, T.
1996. Journal of Multivariate Analysis, 57 (2), 228–239. doi:10.1006/jmva.1996.0031
Henze, N.; Wagner, T.
2002. Journal of Multivariate Analysis, 62 (1), 1–23. doi:10.1006/jmva.1997.1684
Baringhaus, L.; Gürtler, N.; Henze, N.
2000. Australian & New Zealand Journal of Statistics, 42 (2), 179–192. doi:10.1111/1467-842X.00117
Henze, N.; Meintanis, S. G.
2006. Communications in Statistics - Theory and Methods, 31 (9), 1479–1497. doi:10.1081/STA-120013007
Netsch, N.; Tauber, A.; Keskin, O.; Bergfeldt, B.; Wehner, H.; Eidam, D.; Tavakkol, S.; Stapf, D.
2025. Journal of analytical and applied pyrolysis, 107575. doi:10.1016/j.jaap.2025.107575
Dagan, R.; Danon, Y.; Konobeev, A.
2025. (P. Dimitriou, R. Capote & G. Schnabel, Eds.) EPJ Web of Conferences, 322, 10005. doi:10.1051/epjconf/202532210005
Schabel, S.; Heyde, T.; Fleischer, J.
2025. J. Min, W. Zhang, J. Fleischer & G. Lanza (Eds.), Sustainable Manufacturing Innovations: Focus on New Energy Vehicles, Production Robots, and Software-Defined Manufacturing – Proceedings of ICSM 2024, Shanghai, China, October 30-November 1, 2024. Ed.: J. Min, 99–107, Springer Nature Switzerland. doi:10.1007/978-3-031-84744-8_9
Maurer, M.; Popescu, R.; Störmer, H.; Casapu, M.; Grunwaldt, J.-D.
2025. Applied Catalysis B: Environment and Energy, 126347. doi:10.1016/j.apcatb.2025.126347
Palheta, J. M. T.; Batista, A. L. de O.; Flores, E. M.; Rêgo, C. R. C.; Santos, A. S.; Guedes-Sobrinho, D.; Cavalheiro Dias, A.; Piotrowski, M. J.
2025. Nanoscale, 1. doi:10.1039/D5NR04047G
Höhler, D.; Haag, J.; Kozlov, A. M.; Morel, B.; Stamatakis, A. P.
2024. (A. Bateman, Ed.) Bioinformatics Advances, 5 (1), 1. doi:10.1093/bioadv/vbaf300
Sebbar, N.; Bockhorn, H.; Trimis, D.
2026. International Journal of Chemical Kinetics, 58 (1-2), 18–41. doi:10.1002/kin.70020
Qi, M.; Plank, M.; Yin, G.; Chen, T.
2025. Advanced Materials, 1. doi:10.1002/adma.202520851
Singh, D.; Hu, Y.; Parate, S. K.; Thareja, S.; Shang, Y.; Nukala, P.; Fichtner, M. P.; Kundu, D.; Barpanda, P.
2025. Small, 1. doi:10.1002/smll.202506524
Gautam, D.; Wiberg, G. K. H.; Quinson, J.; Wang, D.; Clausen, C. M.; Rohde, R.; Klemmt, R.; Rossmeisl, J.; Bøjesen, E. D.; Arenz, M.
2025. Small Structures, 1. doi:10.1002/sstr.202500666
Choezom, D.; Notter, S.; Griebel, T.; Ferreira, N.; Gruetz, J.; Kulkarni, A.; Schröter, M.; Lukinavičius, G.; Möbius, W.; Conradi, L.-C.; Feldmann, C.; Alves, F.
2025. Small Science, 1. doi:10.1002/smsc.202500470
Yang, Z.; Liu, S.; Chen, K.; Zhang, G.; Gong, F.; Xing, S.; Wang, J.
2025. Journal of Materials Chemistry A, 1. doi:10.1039/D5TA08719H
Wondimu, S. F.; Khanduri, R.; Atanga, J.; Hippler, M.; Hofmann, A. F.; Hussal, C.; Kohler, D.; Krämmer, S.; Bog, U.; Wienhold, T.; Koenig, M.; Köber, S.; Mappes, T.; Lahann, J.; Kalt, H.; Freude, W.; Sleeman, J.; Warnecke, A.; Erbes, T.; Juhasz-Böss, I.; Koos, C. G.; Nazarenko, I.
2025. Lab on a Chip, 1. doi:10.1039/D5LC00269A
Thomas, M.; Tripathi, A. K.; Sood, R.; Saha, S.; Dhyani, S.
2025. Arboricultural Journal, 1–18. doi:10.1080/03071375.2025.2598181



