Head of Deparment: Dr. Michael Rieth

Our research and development work is part of large-scale research and makes an important contribution to energy research at national and European level. As a partner in the Helmholtz Association's energy program and a member of the EUROfusion large-scale research project, we are actively shaping the future of nuclear fusion.

Focus

We develop structural and functional materials that can withstand extreme conditions. These include high temperatures and heat fluxes, as well as high-energy neutron radiation in combination with mechanical, chemical, or time-critical loads. The material properties are tailored by us for each specific application case. In this way, we open up new applications and areas of use in the field of energy conversion. Typical examples include components of a fusion power plant, such as plasma-facing components (divertor), heat exchangers (blanket), and neutron multipliers (tritium breeding elements).

Competence

Our research is application-oriented and, above all, takes place under the aspects of large-scale research. Therefore, alongside sustainability and cost-effectiveness, the focus is particularly on the use of industrial production, forming, joining, and manufacturing technologies. Starting from an idea, our materials development encompasses theoretical modelling, thermodynamic and thermo-mechanical simulations, production in the laboratory and on an industrial scale, experimental characterization of all relevant properties, microstructural and chemical analyses, the manufacturing of prototypes (semi-finished products and mockups), as well as component testing under the respective operating conditions. Our goal is to provide novel materials, including the materials technology process parameters and key characteristics required for production and component manufacturing.

Network

Despite our focus on materials for very specific applications, the boundary conditions, requirements, and properties to be considered are very complex and diverse. So not all necessary investigations and experiments can be carried out within our department. Therefore, we collaborate closely with a variety of partners from KIT, industry, and other research institutions both domestically and internationally. In particular, the characterization and testing of prototypes requires access to large-scale facilities, such as test reactors for neutron irradiation: : HFIRBR2, or experimental setups for the investigation of plasma-material interactions: HELOKA, ASDEXGLADISJUDITH & JULE-PSI.

Department Group

Graues Hintergrundbild
High-Temperature Materials

Gray Background
Microstructure Analysis

Gaskorrosion

Graues Hintergrundbild
Automated Modeling and Validation

Automated modeling and validation

Group

Atomistische Modellierung
und Validierung

Publicationslist


Some peculiar boundary phenomena for extremes of rth nearest neighbor links
Dette, H.; Henze, N.
1990. Statistics & Probability Letters, 10 (5), 381–390. doi:10.1016/0167-7152(90)90018-3
On the consistency of a test for symmetry based on a runs statistic
Henze, N.
2007. Journal of Nonparametric Statistics, 3 (2), 195–199. doi:10.1080/10485259308832582
The Limit Distribution of the Largest Interpoint Distance from a Symmetric Kotz Sample
Henze, N.; Klein, T.
1996. Journal of Multivariate Analysis, 57 (2), 228–239. doi:10.1006/jmva.1996.0031
A New Approach to the BHEP Tests for Multivariate Normality
Henze, N.; Wagner, T.
2002. Journal of Multivariate Analysis, 62 (1), 1–23. doi:10.1006/jmva.1997.1684
Theory & Methods: Weighted Integral Test Statistics and Components of Smooth Tests of Fit
Baringhaus, L.; Gürtler, N.; Henze, N.
2000. Australian & New Zealand Journal of Statistics, 42 (2), 179–192. doi:10.1111/1467-842X.00117
GOODNESS-OF-FIT TESTS BASED ON A NEW CHARACTERIZATION OF THE EXPONENTIAL DISTRIBUTION
Henze, N.; Meintanis, S. G.
2006. Communications in Statistics - Theory and Methods, 31 (9), 1479–1497. doi:10.1081/STA-120013007
Chemical Recycling of Mixed Thermoplastics via Pyrolysis: A Comparative Study of Feedstock Influence and Reactor Impact
Netsch, N.; Tauber, A.; Keskin, O.; Bergfeldt, B.; Wehner, H.; Eidam, D.; Tavakkol, S.; Stapf, D.
2025. Journal of analytical and applied pyrolysis, 107575. doi:10.1016/j.jaap.2025.107575
Open issues on scattering kernels of compound nuclear reactors
Dagan, R.; Danon, Y.; Konobeev, A.
2025. (P. Dimitriou, R. Capote & G. Schnabel, Eds.) EPJ Web of Conferences, 322, 10005. doi:10.1051/epjconf/202532210005
Investigation of Battery Electrode Surface Topography During Clamping for Format-Flexible Laser Cutting
Schabel, S.; Heyde, T.; Fleischer, J.
2025. J. Min, W. Zhang, J. Fleischer & G. Lanza (Eds.), Sustainable Manufacturing Innovations: Focus on New Energy Vehicles, Production Robots, and Software-Defined Manufacturing – Proceedings of ICSM 2024, Shanghai, China, October 30-November 1, 2024. Ed.: J. Min, 99–107, Springer Nature Switzerland. doi:10.1007/978-3-031-84744-8_9
The effect of support and promoters on the performance of Pt-based H2-SCR catalysts for NOx removal
Maurer, M.; Popescu, R.; Störmer, H.; Casapu, M.; Grunwaldt, J.-D.
2025. Applied Catalysis B: Environment and Energy, 126347. doi:10.1016/j.apcatb.2025.126347
Stable 1T″ HfCl monolayer with strong excitonic effects and promising solar harvesting efficiency
Palheta, J. M. T.; Batista, A. L. de O.; Flores, E. M.; Rêgo, C. R. C.; Santos, A. S.; Guedes-Sobrinho, D.; Cavalheiro Dias, A.; Piotrowski, M. J.
2025. Nanoscale, 1. doi:10.1039/D5NR04047G
Performance assessment of phylogenetic inference tools using PhyloSmew
Höhler, D.; Haag, J.; Kozlov, A. M.; Morel, B.; Stamatakis, A. P.
2024. (A. Bateman, Ed.) Bioinformatics Advances, 5 (1), 1. doi:10.1093/bioadv/vbaf300
A Computational Study of the Oxidation of the Phenanthryl Radical CH•: Thermochemistry and Possible Reaction Pathways
Sebbar, N.; Bockhorn, H.; Trimis, D.
2026. International Journal of Chemical Kinetics, 58 (1-2), 18–41. doi:10.1002/kin.70020
Role of Defects on the Electrochemical Activity of ZnVO Spinel Cathode for Secondary Zn‐Ion Batteries
Singh, D.; Hu, Y.; Parate, S. K.; Thareja, S.; Shang, Y.; Nukala, P.; Fichtner, M. P.; Kundu, D.; Barpanda, P.
2025. Small, 1. doi:10.1002/smll.202506524
Noble Metal‐Based High Entropy Alloy Nanoparticles Prepared by Pulsed Electrodeposition: An Approach for Medium Throughput Studies
Gautam, D.; Wiberg, G. K. H.; Quinson, J.; Wang, D.; Clausen, C. M.; Rohde, R.; Klemmt, R.; Rossmeisl, J.; Bøjesen, E. D.; Arenz, M.
2025. Small Structures, 1. doi:10.1002/sstr.202500666
Macropinocytic Uptake and pH‐Responsive Endolysosomal Processing Drive Sustained Chemotherapeutic Efficacy of High‐Load Core@Shell Nanocarriers in Colorectal Cancer
Choezom, D.; Notter, S.; Griebel, T.; Ferreira, N.; Gruetz, J.; Kulkarni, A.; Schröter, M.; Lukinavičius, G.; Möbius, W.; Conradi, L.-C.; Feldmann, C.; Alves, F.
2025. Small Science, 1. doi:10.1002/smsc.202500470
Anchoring electron-delocalized CeO on porous carbon for expediting polysulfide kinetics toward high-loading Li–S batteries
Yang, Z.; Liu, S.; Chen, K.; Zhang, G.; Gong, F.; Xing, S.; Wang, J.
2025. Journal of Materials Chemistry A, 1. doi:10.1039/D5TA08719H
Advancing liquid biopsy: whispering gallery mode laser detection of the HER2 cancer biomarker on extracellular vesicles
Wondimu, S. F.; Khanduri, R.; Atanga, J.; Hippler, M.; Hofmann, A. F.; Hussal, C.; Kohler, D.; Krämmer, S.; Bog, U.; Wienhold, T.; Koenig, M.; Köber, S.; Mappes, T.; Lahann, J.; Kalt, H.; Freude, W.; Sleeman, J.; Warnecke, A.; Erbes, T.; Juhasz-Böss, I.; Koos, C. G.; Nazarenko, I.
2025. Lab on a Chip, 1. doi:10.1039/D5LC00269A
Exploring the relationship between tree traits and microhabitat richness in urban greenspaces of Nagpur city, India
Thomas, M.; Tripathi, A. K.; Sood, R.; Saha, S.; Dhyani, S.
2025. Arboricultural Journal, 1–18. doi:10.1080/03071375.2025.2598181


Contact person

Dr. Dipl.-Ing. Michael Rieth
Head of Department Metallic Materials

+49 721 608-22909
michael.rieth∂kit.edu