Head of Deparment: Dr. Michael Rieth
Our research and development work is part of large-scale research and makes an important contribution to energy research at national and European level. As a partner in the Helmholtz Association's energy program and a member of the EUROfusion large-scale research project, we are actively shaping the future of nuclear fusion.
Focus
We develop structural and functional materials that can withstand extreme conditions. These include high temperatures and heat fluxes, as well as high-energy neutron radiation in combination with mechanical, chemical, or time-critical loads. The material properties are tailored by us for each specific application case. In this way, we open up new applications and areas of use in the field of energy conversion. Typical examples include components of a fusion power plant, such as plasma-facing components (divertor), heat exchangers (blanket), and neutron multipliers (tritium breeding elements).
Competence
Our research is application-oriented and, above all, takes place under the aspects of large-scale research. Therefore, alongside sustainability and cost-effectiveness, the focus is particularly on the use of industrial production, forming, joining, and manufacturing technologies. Starting from an idea, our materials development encompasses theoretical modelling, thermodynamic and thermo-mechanical simulations, production in the laboratory and on an industrial scale, experimental characterization of all relevant properties, microstructural and chemical analyses, the manufacturing of prototypes (semi-finished products and mockups), as well as component testing under the respective operating conditions. Our goal is to provide novel materials, including the materials technology process parameters and key characteristics required for production and component manufacturing.
Network
Despite our focus on materials for very specific applications, the boundary conditions, requirements, and properties to be considered are very complex and diverse. So not all necessary investigations and experiments can be carried out within our department. Therefore, we collaborate closely with a variety of partners from KIT, industry, and other research institutions both domestically and internationally. In particular, the characterization and testing of prototypes requires access to large-scale facilities, such as test reactors for neutron irradiation: : HFIR, BR2, or experimental setups for the investigation of plasma-material interactions: HELOKA, ASDEX, GLADIS, JUDITH & JULE-PSI.



Automated modeling and validation
GroupPublicationslist
Cao, Y.; Chen, W. Y.; Wantzen, K. M.
2025. The Geographical Journal, 191 (3). doi:10.1111/geoj.70029
Fang, X.; Nakamura, A.
2025. Journal of the American Ceramic Society, 108 (6), Art.-Nr. e20475. doi:10.1111/jace.20475
Weber, M. L.; Kindelmann, M.; Jennings, D.; Hoelschke, J.; Dittmann, R.; Mayer, J.; Rheinheimer, W.; Fang, X.; Gunkel, F.
2025. American Chemical Society (ACS). doi:10.26434/chemrxiv-2025-5s63g
Hirel, P.; Yewou, F. J. K.; Zhang, J.; Lu, W.; Fang, X.; Carrez, P.
2025. arxiv. doi:10.48550/arxiv.2502.02184
Andrade, M.; Hernández, A.; Pimentel, A.; Cruz, J.; Ramos, A.; Ludwig, P.; Belo, J. C.; Ramalho, R.
2025, September 8. doi:10.5281/zenodo.17079273
Lin, J.; Ji, C.; Guo, G.; Luo, Y.; Huang, P.; Xu, F.; Sun, L.; Pfleging, W.; Novoselov, K. S.
2025. Angewandte Chemie International Edition, 64 (24), Art.-Nr.: e202501721. doi:10.1002/anie.202501721
Agola, D.; Zeile, P.; Soutschek, M.; Schwarz, J.
2024. Universität Stuttgart. doi:10.5445/IR/1000187662
Henze, N.
2018. Stochastik in der Schule, 38 (3), 12–23
Henze, N.
2018. Stochastik in der Schule, 38 (3), 24–31
Dhundhwal, R.; Duan, H.; Brauch, L.; Arabi, S.; Fuchs, D.; Haghighirad, A.-A.; Welle, A.; Scharwaechter, F.; Pal, S.; Scheffler, M.; Palomo, J.; Leghtas, Z.; Murani, A.; Hahn, H.; Aghassi-Hagmann, J.; Kübel, C.; Wulfhekel, W.; Pop, I. M.; Reisinger, T.
2025. Applied Physics Letters, 127 (21), Art.-Nr.: 214005. doi:10.1063/5.0302324
Henze, N.; Schilling, J.
2021. Stochastik in der Schule, 41 (1), 19–27
Henze, N.
2021. Stochastik in der Schule, 41 (1), 33–35
Henze, N.; Vehling, R.
2021. Stochastik in der Schule, 41 (1), 27–32
Butsch, L.; Fasen-Hartmann, V.
2025. Electronic Journal of Statistics, 19 (2), 5695–5740. doi:10.1214/25-EJS2469
Henze, N.; Vehling, R.
2021. Stochastik in der Schule, 41 (2), 2–7
Henze, N.; Vehling, R.
2021. Stochastik in der Schule, 41 (3), 2–8
Peng, H.; Zhu, Y.; Wang, J.; Zhu, J.; Liu, J.; Zhang, K.; Lynch, P.; Fraser, H. L.; Hodgson, P.; Heilmaier, M.; Birbilis, N.; Wang, Y.; Huang, A.
2025. Nature Communications, 16 (1), Art.-Nr.: 10224. doi:10.1038/s41467-025-65033-2
Blomley, E.; Gethmann, J.; Marsching, S.; Mexner, W.; Mochihashi, A.; Müller, A.-S.; Schreiber, P.; Schuh, M.; Teytelman, D.
2023. 13th International Workshop on Emerging Technologies and Scientific Facilities Controls (PCaPAC 2022), Prag, CZ, October 4-7, 2022. Ed.: B. Plötzeneder, JACoW Publishing. doi:10.18429/JACoW-PCaPAC2022-THP20



