Head of Deparment: Dr. Michael Rieth

Our research and development work is part of large-scale research and makes an important contribution to energy research at national and European level. As a partner in the Helmholtz Association's energy program and a member of the EUROfusion large-scale research project, we are actively shaping the future of nuclear fusion.

Focus

We develop structural and functional materials that can withstand extreme conditions. These include high temperatures and heat fluxes, as well as high-energy neutron radiation in combination with mechanical, chemical, or time-critical loads. The material properties are tailored by us for each specific application case. In this way, we open up new applications and areas of use in the field of energy conversion. Typical examples include components of a fusion power plant, such as plasma-facing components (divertor), heat exchangers (blanket), and neutron multipliers (tritium breeding elements).

Competence

Our research is application-oriented and, above all, takes place under the aspects of large-scale research. Therefore, alongside sustainability and cost-effectiveness, the focus is particularly on the use of industrial production, forming, joining, and manufacturing technologies. Starting from an idea, our materials development encompasses theoretical modelling, thermodynamic and thermo-mechanical simulations, production in the laboratory and on an industrial scale, experimental characterization of all relevant properties, microstructural and chemical analyses, the manufacturing of prototypes (semi-finished products and mockups), as well as component testing under the respective operating conditions. Our goal is to provide novel materials, including the materials technology process parameters and key characteristics required for production and component manufacturing.

Network

Despite our focus on materials for very specific applications, the boundary conditions, requirements, and properties to be considered are very complex and diverse. So not all necessary investigations and experiments can be carried out within our department. Therefore, we collaborate closely with a variety of partners from KIT, industry, and other research institutions both domestically and internationally. In particular, the characterization and testing of prototypes requires access to large-scale facilities, such as test reactors for neutron irradiation: : HFIRBR2, or experimental setups for the investigation of plasma-material interactions: HELOKA, ASDEXGLADISJUDITH & JULE-PSI.

Department Group

Graues Hintergrundbild
High-Temperature Materials

Gray Background
Microstructure Analysis

Gaskorrosion

Graues Hintergrundbild
Automated Modeling and Validation

Automated modeling and validation

Group

Atomistische Modellierung
und Validierung

Publicationslist


Dislocations in ceramics: The road less traveled
Fang, X.; Nakamura, A.
2025. Journal of the American Ceramic Society, 108 (6), Art.-Nr. e20475. doi:10.1111/jace.20475
Atomic-Scale Insights into Nanoparticle Exsolution from Dislocation- Engineered Host Oxides
Weber, M. L.; Kindelmann, M.; Jennings, D.; Hoelschke, J.; Dittmann, R.; Mayer, J.; Rheinheimer, W.; Fang, X.; Gunkel, F.
2025. American Chemical Society (ACS). doi:10.26434/chemrxiv-2025-5s63g
Dislocations and plasticity of KTaO perovskite modeled with a new interatomic potential
Hirel, P.; Yewou, F. J. K.; Zhang, J.; Lu, W.; Fang, X.; Carrez, P.
2025. arxiv. doi:10.48550/arxiv.2502.02184
Controls on Water-Magma Interactions at Hydraulically-charged Volcanic Islands, Supplementary Information
Andrade, M.; Hernández, A.; Pimentel, A.; Cruz, J.; Ramos, A.; Ludwig, P.; Belo, J. C.; Ramalho, R.
2025, September 8. doi:10.5281/zenodo.17079273
Interfacial H‐bond Network/Concentration Fields/Electric Fields Regulation Achieved by D‐Valine Anions Realizes the Highly Efficient Aqueous Zinc Ion Batteries
Lin, J.; Ji, C.; Guo, G.; Luo, Y.; Huang, P.; Xu, F.; Sun, L.; Pfleging, W.; Novoselov, K. S.
2025. Angewandte Chemie International Edition, 64 (24), Art.-Nr.: e202501721. doi:10.1002/anie.202501721
Verständnisorientierter gymnasialer Stochastikunterricht - quo vadis?
Henze, N.
2018. Stochastik in der Schule, 38 (3), 12–23
Wartezeitprobleme in Bernoulli-Ketten -- ein verständnisorientierter Zugang
Henze, N.
2018. Stochastik in der Schule, 38 (3), 24–31
Der verwirrte Passagier
Henze, N.
2018. Stochastik in der Schule, 38 (3), 32–33
High-quality superconducting tantalum resonators with beta phase defects
Dhundhwal, R.; Duan, H.; Brauch, L.; Arabi, S.; Fuchs, D.; Haghighirad, A.-A.; Welle, A.; Scharwaechter, F.; Pal, S.; Scheffler, M.; Palomo, J.; Leghtas, Z.; Murani, A.; Hahn, H.; Aghassi-Hagmann, J.; Kübel, C.; Wulfhekel, W.; Pop, I. M.; Reisinger, T.
2025. Applied Physics Letters, 127 (21), Art.-Nr.: 214005. doi:10.1063/5.0302324
Wann ist der Käfer erstmals in der gegenüberliegenden Ecke?
Henze, N.; Schilling, J.
2021. Stochastik in der Schule, 41 (1), 19–27
Ein Simpson-Paradoxon bei Covid-19-Todesfallraten
Henze, N.
2021. Stochastik in der Schule, 41 (1), 33–35
Im Vordergrund steht das Problem - oder: Warum ein Häufigkeitsnetz?
Henze, N.; Vehling, R.
2021. Stochastik in der Schule, 41 (1), 27–32
Information criteria for the number of directions of extremes in high-dimensional data
Butsch, L.; Fasen-Hartmann, V.
2025. Electronic Journal of Statistics, 19 (2), 5695–5740. doi:10.1214/25-EJS2469
Das Pólyasche Urnenmodell - ein Blick über den Tellerrand der Binomialverteilung
Henze, N.; Vehling, R.
2021. Stochastik in der Schule, 41 (2), 2–7
Überraschungen mit Wartezeitverteilungen im Pólyaschen Urnenmodell
Henze, N.; Vehling, R.
2021. Stochastik in der Schule, 41 (3), 2–8
Das Stimmzettelproblem
Henze, N.
2021. Stochastik in der Schule, 41 (2), 26–28
Achieving high strain hardening and strength in an additively manufactured titanium alloy
Peng, H.; Zhu, Y.; Wang, J.; Zhu, J.; Liu, J.; Zhang, K.; Lynch, P.; Fraser, H. L.; Hodgson, P.; Heilmaier, M.; Birbilis, N.; Wang, Y.; Huang, A.
2025. Nature Communications, 16 (1), Art.-Nr.: 10224. doi:10.1038/s41467-025-65033-2
Python Based Interface to the KARA LLRF System
Blomley, E.; Gethmann, J.; Marsching, S.; Mexner, W.; Mochihashi, A.; Müller, A.-S.; Schreiber, P.; Schuh, M.; Teytelman, D.
2023. 13th International Workshop on Emerging Technologies and Scientific Facilities Controls (PCaPAC 2022), Prag, CZ, October 4-7, 2022. Ed.: B. Plötzeneder, JACoW Publishing. doi:10.18429/JACoW-PCaPAC2022-THP20


Contact person

Dr. Dipl.-Ing. Michael Rieth
Head of Department Metallic Materials

+49 721 608-22909
michael.rieth∂kit.edu