Head of Deparment: Dr. Michael Rieth
Our research and development work is part of large-scale research and makes an important contribution to energy research at national and European level. As a partner in the Helmholtz Association's energy program and a member of the EUROfusion large-scale research project, we are actively shaping the future of nuclear fusion.
Focus
We develop structural and functional materials that can withstand extreme conditions. These include high temperatures and heat fluxes, as well as high-energy neutron radiation in combination with mechanical, chemical, or time-critical loads. The material properties are tailored by us for each specific application case. In this way, we open up new applications and areas of use in the field of energy conversion. Typical examples include components of a fusion power plant, such as plasma-facing components (divertor), heat exchangers (blanket), and neutron multipliers (tritium breeding elements).
Competence
Our research is application-oriented and, above all, takes place under the aspects of large-scale research. Therefore, alongside sustainability and cost-effectiveness, the focus is particularly on the use of industrial production, forming, joining, and manufacturing technologies. Starting from an idea, our materials development encompasses theoretical modelling, thermodynamic and thermo-mechanical simulations, production in the laboratory and on an industrial scale, experimental characterization of all relevant properties, microstructural and chemical analyses, the manufacturing of prototypes (semi-finished products and mockups), as well as component testing under the respective operating conditions. Our goal is to provide novel materials, including the materials technology process parameters and key characteristics required for production and component manufacturing.
Network
Despite our focus on materials for very specific applications, the boundary conditions, requirements, and properties to be considered are very complex and diverse. So not all necessary investigations and experiments can be carried out within our department. Therefore, we collaborate closely with a variety of partners from KIT, industry, and other research institutions both domestically and internationally. In particular, the characterization and testing of prototypes requires access to large-scale facilities, such as test reactors for neutron irradiation: : HFIR, BR2, or experimental setups for the investigation of plasma-material interactions: HELOKA, ASDEX, GLADIS, JUDITH & JULE-PSI.



Automated modeling and validation
GroupPublicationslist
Peng, H.; Baker, I.; Weiss, K.-P.
2025. Intermetallics, 182, 108777. doi:10.1016/j.intermet.2025.108777
Leichtle, D.; Afanasenko, R.; Bachmann, C.; Cufar, A.; Federici, G.; Franke, T.; Kos, B.; Moscato, I.; Park, J. H.; Pereslavtsev, P.; Valentine, A.
2025. Fusion Science and Technology, 1–8. doi:10.1080/15361055.2025.2503680
Wang, R.; Zhang, Y.; Meyerhenke, H.; Feng, Z.; Maharjan, S.; Zhang, Y.
2025. IEEE Transactions on Services Computing, 18 (4), 2254–2266. doi:10.1109/TSC.2025.3586094
Wang, N.; Shang, K.; Liu, H.; Duan, Y.; Qin, D.
2025. Applied Energy, 384, 125442. doi:10.1016/j.apenergy.2025.125442
Ghule, S.; Korenkov, K. O.; Sharapa, D. I.; Amsharov, K. Y.; Kataev, E. A.; Oshchepkov, A. S.
2025. Chemistry – A European Journal, 31 (24). doi:10.1002/chem.202500773
Soler, T.; Akerboom, E.; Stamatopoulou, P. E.; Sugimoto, H.; Fujii, M.; Fiedler, S.; Polman, A.
2025. ACS Photonics, 12 (8), 4161–4170. doi:10.1021/acsphotonics.5c00173
Bonetti, M.; Rendler, P.; Torres Bobadilla, W. J.
2025. Journal of High Energy Physics, 2025 (7), 24. doi:10.1007/JHEP07(2025)024
Andersen, C. R. Y.; Lehmann, S.; Tornberg, M. U.; Maliakkal, C. B.; Jacobsson, D.; Mølhave, K. S.; Dick, K. A.
2025. Nanotechnology, 36 (13), 135601. doi:10.1088/1361-6528/adae17
Guo, D.; Wang, D.; Chen, Y.; Liu, X.; Hu, G.
2025. Journal of Applied Mechanics, 92 (7). doi:10.1115/1.4068253
Kozubek, M.; Kuchelbacher, L.; Chum, J.; Sindelarova, T.; Trinkl, F.; Podolska, K.
2025. Atmospheric Measurement Techniques, 18 (6), 1373–1388. doi:10.5194/amt-18-1373-2025
Danylak, P.
2025, December 17. Karlsruher Institut für Technologie (KIT)
Abhilash; Satpathi, A.; Harshangkumar, T.; Subramani, T.; Jaisankar, I.; Shahi, N. K.
2025. Atmosphere, 16 (3), 301. doi:10.3390/atmos16030301
de Santos-Berbel, C.; Zimmermann, M.
2025. Journal of Transportation Engineering, Part A: Systems, 151 (9). doi:10.1061/JTEPBS.TEENG-8852
Rischawy, F.; Briskot, T.; Nitsch, F.; Saleh, D.; Wang, G.; Kluters, S.; Studts, J.; Hubbuch, J.
2026. Computers & Chemical Engineering, 204, 109357. doi:10.1016/j.compchemeng.2025.109357
Lützenkirchen, J.; Monjezi, B. H.; Kosmulski, M.
2025. RSC Advances, 15 (22), 17248–17254. doi:10.1039/d5ra01865j
Vasconcelos, C. C.; Ferraz, I. D. K.; Durgante, F. M.; Wittmann, F.; Schöngart, J.; Piedade, M. T. F.; Camargo, J. L. C.; Terra-Araujo, M. H.
2025. Systematic Botany, 50 (1), 55–66. doi:10.1600/036364425X17466502618821
Heizmann, M.; Längle, T.
2025. tm - Technisches Messen, 92 (7-8), 277–278. doi:10.1515/teme-2025-0076
Darsan S, A.; Kariyottukuniyil, M. J.; K Rajan, V.
2025. ChemistrySelect, 10 (28). doi:10.1002/slct.202501919
Willmann, G.
1978. Universität Karlsruhe (TH)
Chatzopoulou, A.; Tourpali, K.; Bais, A. F.; Braesicke, P.
2025. Photochemical & Photobiological Sciences, 24 (1), 111. doi:10.1007/s43630-025-00685-z



