Head of Deparment: Dr. Michael Rieth

Our research and development work is part of large-scale research and makes an important contribution to energy research at national and European level. As a partner in the Helmholtz Association's energy program and a member of the EUROfusion large-scale research project, we are actively shaping the future of nuclear fusion.

Focus

We develop structural and functional materials that can withstand extreme conditions. These include high temperatures and heat fluxes, as well as high-energy neutron radiation in combination with mechanical, chemical, or time-critical loads. The material properties are tailored by us for each specific application case. In this way, we open up new applications and areas of use in the field of energy conversion. Typical examples include components of a fusion power plant, such as plasma-facing components (divertor), heat exchangers (blanket), and neutron multipliers (tritium breeding elements).

Competence

Our research is application-oriented and, above all, takes place under the aspects of large-scale research. Therefore, alongside sustainability and cost-effectiveness, the focus is particularly on the use of industrial production, forming, joining, and manufacturing technologies. Starting from an idea, our materials development encompasses theoretical modelling, thermodynamic and thermo-mechanical simulations, production in the laboratory and on an industrial scale, experimental characterization of all relevant properties, microstructural and chemical analyses, the manufacturing of prototypes (semi-finished products and mockups), as well as component testing under the respective operating conditions. Our goal is to provide novel materials, including the materials technology process parameters and key characteristics required for production and component manufacturing.

Network

Despite our focus on materials for very specific applications, the boundary conditions, requirements, and properties to be considered are very complex and diverse. So not all necessary investigations and experiments can be carried out within our department. Therefore, we collaborate closely with a variety of partners from KIT, industry, and other research institutions both domestically and internationally. In particular, the characterization and testing of prototypes requires access to large-scale facilities, such as test reactors for neutron irradiation: : HFIRBR2, or experimental setups for the investigation of plasma-material interactions: HELOKA, ASDEXGLADISJUDITH & JULE-PSI.

Department Group

Graues Hintergrundbild
High-Temperature Materials

Gray Background
Microstructure Analysis

Gaskorrosion

Graues Hintergrundbild
Automated Modeling and Validation

Automated modeling and validation

Group

Atomistische Modellierung
und Validierung

Publicationslist


Are VR Experimental Labs an Alternative to Traditional Experimental Settings for NeuroIS Research? A Replication Study with the Iowa Gambling Task
Tadson, B.; Mädche, A.
2026. Information Systems and Neuroscience – NeuroIS Retreat 2025, Vienna, Austria. Ed.: F. Davis, 259–270, Springer Nature Switzerland. doi:10.1007/978-3-032-00815-2_24
Design, synthesis, antiproliferative assessments, and computational studies of new quinolin-2(1H)-ones as dual EGFR/HER-2 inhibitors (vol 13, 1638489, 2025)
Al-Wahaibi, L. H.; Abou-Zied, H. A.; Nieger, M.; Bräse, S.; Youssif, B. G. M.; Tawfeek, H. N.
2025. Frontiers in Chemistry, 13. doi:10.3389/fchem.2025.1748491
Interior soft x-ray tomography with sparse global sampling
Ekman, A.; Ekman, A. A.; Chen, J.-H.; Larabell, C. A.; Gros, M. A. L.; Weinhardt, V.
2025. Physica Scripta, 100 (12), 126008. doi:10.1088/1402-4896/ae26f9
Microstructural and mechanical investigations regarding the formability of glass fiber reinforced thermoplastic pultruded profiles
Schukraft, J.; Fünkner, M.; Zhang, F.; Liu, H.; Wilhelm, M. L.; Kaptur, L.; Henning, F.; Hrymak, A. N.
2025. Journal of Thermoplastic Composite Materials. doi:10.1177/08927057251412780
The moderating role of diet and physical activity in insulin resistance and immunometabolic depression
Gruber, J. R.; Schiweck, C.; Ruf, A.; Süß, E. D.; Japtok, P.; Schouler, N.; Edwin Thanarajah, S.; Reif, A.; Matura, S.
2025. Scientific Reports, 15 (1), 44417. doi:10.1038/s41598-025-32454-4
Quantifying the spatial extent and attenuation of lake thermal regulation at diurnal scales under extreme heat
Xing, Z.; Li, Y.; Dai, Y.; Wei, J.; Ma, M.; Zhang, X.; Gao, H.; Kunstmann, H.
2026. Weather and Climate Extremes, 51, 100847. doi:10.1016/j.wace.2025.100847
Layout optimization for the LUXE-NPOD experiment
Almanza Soto, M.; Borysov, O.; Ferber, T.; Huang, S.; Irles, A.; Klute, M.; Márquez Hernández, J. P.; Pérez Segura, J.; Quishpe, R.; Soreq, Y.; Tal Hod, N.; Trevisani, N.
2025. Physical Review D, 112 (11), 112014. doi:10.1103/n2nh-7v5b
Macro Economic and Ecological Aspects of Cell Production in Europe 2030
Wicke, T.; Weymann, L.; Neef, C.; Tübke, J.
2025. BATTERIES-BASEL, 11 (12), 457. doi:10.3390/batteries11120457
RelExt: A new dark matter tool for the exploration of dark matter models
Capucha, R.; Elyaouti, K.; Mühlleitner, M.; Plotnikov, J.; Santos, R.
2026. Computer Physics Communications, 320, 109968. doi:10.1016/j.cpc.2025.109968
Cyclopentadienyl Complexes of Technetium
Abram, U.; Roca Jungfer, M.
2025. Molecules, 30 (24), 4813. doi:10.3390/molecules30244813
Understanding bioreceptivity of concrete: realistic and accelerated weathering experiments with model subaerial biofilms
Stohl, L.; Tonon, C.; Cook, J.; Gorbushina, A.; Dehn, F.; von Werder, J.
2026. Materials and Structures, 59 (1), 22. doi:10.1617/s11527-025-02864-x
Manufacturability and microstructure of AlSi10Mg/SiC composites with different volume fractions of SiC using laser powder bed fusion
Conzelmann, A.; Seifert, H. J.; Mozaffari-Jovein, H.
2025. The International Journal of Advanced Manufacturing Technology. doi:10.1007/s00170-025-17075-5
Functional morphology of the leg musculature in the marine seal louse: adaptations for high-performance attachment to diving hosts
Preuss, A.; van de Kamp, T.; Hamann, E.; Zuber, M.; Ornowski, L.; Gorb, S. N.
2025. Scientific Reports, 15 (1), 44732. doi:10.1038/s41598-025-32804-2
Tuning membraneless microbial electrolysis cells operation alters efficiency and anodic microbiome toward scalable hydrogen production from sludge-hydrolysate
Golalikhani, M.; Lapp, C. J.; Prakash, N. S.; Hille-Reichel, A.; Gescher, J.; Elreedy, A.
2026. International Journal of Hydrogen Energy, 202, 153107. doi:10.1016/j.ijhydene.2025.153107
SmartOperator: An Open Experimental Simulation Software for NeuroIS Operations Management Systems Research
Mueller, E.; Wuest, F.; Schmidt, B.; Maedche, A.
2026. Information Systems and Neuroscience – NeuroIS Retreat 2025, Vienna, Austria. Ed.: F. Davis, 225–232, Springer Nature Switzerland. doi:10.1007/978-3-032-00815-2_21
Particle localization with DPTV and sizing with IPI using a forward model and optimization
Sax, C.; Griesmaier, R.; Kriegseis, J.
2026. Measurement Science and Technology, 37 (2), 025201. doi:10.1088/1361-6501/ae2641
Why Behavioral Measures as Indirect Measures of Neurophysiological Activity Are Important for Progress in the NeuroIS discipline
Riedl, R.; Maedche, A.
2026. Information Systems and Neuroscience – NeuroIS Retreat 2025, Vienna, Austria. Ed.: F. Davis, 159–167, Springer Nature Switzerland. doi:10.1007/978-3-032-00815-2_15
WP5
Abusaif, F.
2025, March. RF2.0 Project Meeting (2025), CERN, Genf, March 27–28, 2025
WP1
Abusaif, F.
2025, March. RF2.0 Project Meeting (2025), CERN, Genf, March 27–28, 2025
Innovation and Transfer
Abusaif, F.
2025, September. RF2.0 Project and Review Meeting (2025), Berlin, Germany, September 17–19, 2025


Contact person

Dr. Dipl.-Ing. Michael Rieth
Head of Department Metallic Materials

+49 721 608-22909
michael.rieth∂kit.edu