Prof_Hanemann

Prof. (apl.) Dr.-Ing. Thomas Hanemann

  • Prof. Dr. Thomas Hanemann
    Karlsruhe Institute of Technology (KIT)
    IAM-WK
    Hermann-von-Helmholtz-Platz 1
    Gebäude 695
    76344 Eggenstein-Leopoldshafen
    Germany

Lebenslauf

2011 Übernahme der Professur „Werkstoffprozesstechnik“ am Institut für Mikrosystemtechnik der Albert-Ludwigs-Universität Freiburg
2010

Ernennung zum Abteilungsleiter am Institut für Materialforschung des Karlsruher Instituts für Technologie

2009

Ernennung zum APL-Professor am Institut für Mikrosystemtechnik der Albert-Ludwigs-Universität Freiburg

2005

Habilitation am Institut für Mikrosystemtechnik der Albert-Ludwigs-Universität Freiburg

seit 2000 Delegation vom Forschungszentrum Karlsruhe an den Lehrstuhl Werkstoffprozesstechnik des Instituts (Leitung: Prof. Dr.-Ing. Jürgen Haußelt) für Mikrosystemtechnik der Albert-Ludwigs-Universität Freiburg (Gruppenleiter und Lehrbeauftragter) und in Personalunion
Gruppenleiter der Gruppe Werkstoffe und Verfahren am Institut für Materialforschung III des Forschungszentrums Karlsruhe
1995 - 2000

Wissenschaftlicher Mitarbeiter am Institut für Materialforschung III (heute Institut für Angewandte Materialen) des Forschungszentrums Karlsruhe (heute KIT)

1994 - 1995

Gastwissenschaftler am Organic Optoelectronic Materials Department des IBM Forschungszentrums in Almaden, San Jose, Kalifornien

1993

Promotion zum Dr.-Ing. (Chemie) am Institut für Physikalische Chemie, TU Darmstadt, Thema: „Untersuchungen an niedermolekularen und polymeren Guest-Host-Systemen“

1989 - 1994

Wissenschaftlicher Mitarbeiter am Institut für Physikalische Chemie der TU Darmstadt

1987

Diplom-Ingenieur (Chemie) am Institut für Organische Chemie der Technischen Hochschule Darmstadt (heute Technische Universität Darmstadt)

24.03.1963

geboren in Darmstadt

Forschungsfelder

  • 3D-Druck von Polymeren und Kompositbauteilen mittels STL und FDM
  • Prozesskette Mikropulverspritzgießen von Keramiken und Metallen
  • Materialentwicklung im Bereich Lithium-Ionen-Batterien
  • Entwicklung von Polymeren mit maßgeschneiderten optischen Eigenschaften (Universität Freiburg)
  • Prozessierung und Mikrostrukturierung von Funktionskeramiken (Universität Freiburg)

Publikationen


Development of a Polyethylene Glycol/Polymethyl Methacrylate-Based Binder System for a Borosilicate Glass Filler Suitable for Injection Molding
Zürn, M.; Schrage, A.; Antusch, S.; Bohn, N.; Holzer, P.; Hanemann, T.
2024. Materials, 17 (6), Art.-Nr.: 1396. doi:10.3390/ma17061396
Development of Inkjet Printable Formulations Based on Polyorganosilazane and Divinylbenzene
Qazzazie-Hauser, A.; Honnef, K.; Hanemann, T.
2023. Polymers, 15 (23), 4512. doi:10.3390/polym15234512
Characterization of the Metal Fused Filament Fabrication Process for Manufacturing of Pure Copper Inductors
Schüßler, P.; Franke, J.; Czink, S.; Antusch, S.; Mayer, D.; Laube, S.; Hanemann, T.; Schulze, V.; Dietrich, S.
2023. Materials, 16 (20), Art.-Nr.: 6678. doi:10.3390/ma16206678
Material Extrusion 3D Printing of PEEK-Based Composites
Hanemann, T.; Klein, A.; Baumgärtner, S.; Jung, J.; Wilhelm, D.; Antusch, S.
2023. Polymers, 15 (16), Art.-Nr.: 3412. doi:10.3390/polym15163412
New Partially Water-Soluble Feedstocks for Additive Manufacturing of Ti6Al4V Parts by Material Extrusion
Eickhoff, R.; Antusch, S.; Nötzel, D.; Hanemann, T.
2023. Materials, 16 (8), Art.-Nr.: 3162. doi:10.3390/ma16083162
Effect of Flame Retardants and Electrolyte Variations on Li-Ion Batteries
Fulik, N.; Hofmann, A.; Nötzel, D.; Müller, M.; Reuter, I.; Müller, F.; Smith, A.; Hanemann, T.
2023. Batteries, 9 (2), 82. doi:10.3390/batteries9020082
Feedstock Development for Material Extrusion-Based Printing of Ti6Al4V Parts
Eickhoff, R.; Antusch, S.; Baumgärtner, S.; Nötzel, D.; Hanemann, T.
2022. Materials, 15 (18), Art.-Nr.: 6442. doi:10.3390/ma15186442
Enhanced PTC Effect in Polyamide/Carbon Black Composites
Nagel, J.; Hanemann, T.; Rapp, B. E.; Finnah, G.
2022. Materials, 15 (15), 5400. doi:10.3390/ma15155400
Novel Phosphonium-Based Ionic Liquid Electrolytes for Battery Applications
Hofmann, A.; Rauber, D.; Wang, T.-M.; Hempelmann, R.; Kay, C. W. M.; Hanemann, T.
2022. Molecules, 27 (15), Art.Nr.: 4729. doi:10.3390/molecules27154729
Dataset of propylene carbonate based liquid electrolyte mixtures for sodium-ion cells
Hofmann, A.; Wang, Z.; Bautista, S. P.; Weil, M.; Müller, F.; Löwe, R.; Schneider, L.; Mohsin, I. U.; Hanemann, T.
2022. Data in Brief, 40, Article no: 107775. doi:10.1016/j.dib.2021.107775
Überwachung der kontinuierlichen hydrothermalen Synthese mittels Impedanzspektroskopie 
Schüßler, C.; Zürn, M.; Hanemann, T.; Türk, M.
2022. Chemie - Ingenieur - Technik, 94 (3), 281–288. doi:10.1002/cite.202100146
Poly(ionic liquid) Based Composite Electrolytes for Lithium Ion Batteries
Löwe, R.; Hanemann, T.; Zinkevich, T.; Hofmann, A.
2021. Polymers, 13 (24), Article no: 4469. doi:10.3390/polym13244469
Comprehensive characterization of propylene carbonate based liquid electrolyte mixtures for sodium-ion cells
Hofmann, A.; Wang, Z.; Bautista, S. P.; Weil, M.; Müller, F.; Löwe, R.; Schneider, L.; Mohsin, I. U.; Hanemann, T.
2021. Electrochimica acta, 403, Art.Nr.: 139670. doi:10.1016/j.electacta.2021.139670
Printing of Zirconia Parts via Fused Filament Fabrication
Nötzel, D.; Eickhoff, R.; Pfeifer, C.; Hanemann, T.
2021. Materials, 14 (19), Art.-Nr.: 5467. doi:10.3390/ma14195467
Formulation of a Ceramic Ink for 3D Inkjet Printing
Graf, D.; Jung, J.; Hanemann, T.
2021. Micromachines, 12 (9), 1136. doi:10.3390/mi12091136
Development of actual powder layer height depending on nominal layer thicknesses and selection of laser parameters
Jansen, D.; Hanemann, T.; Radek, M.; Rota, A.; Schröpfer, J.; Heilmaier, M.
2021. Journal of materials processing technology, 298, Art.-Nr.: 117305. doi:10.1016/j.jmatprotec.2021.117305
Structure-Property Relation of Trimethyl Ammonium Ionic Liquids for Battery Applications
Rauber, D.; Hofmann, A.; Philippi, F.; Kay, C. W. M.; Zinkevich, T.; Hanemann, T.; Hempelmann, R.
2021. Applied Sciences, 11 (12), 5679. doi:10.3390/app11125679
Influence of Temperature and Plastic Strain on Deformation Mechanisms and Kink Band Formation in Homogenized HfNbTaTiZr
Chen, H.; Hanemann, T.; Seils, S.; Schliephake, D.; Tirunilai, A. S.; Heilmaier, M.; Weiss, K.-P.; Kauffmann, A.
2021. Crystals, 11 (2), 81. doi:10.3390/cryst11020081
3D-Printed Hermetic Alumina Housings
Eickenscheidt, M.; Langenmair, M.; Dbouk, A.; Nötzel, D.; Hanemann, T.; Stieglitz, T.
2021. Materials, 14 (1), Art. Nr.: 200. doi:10.3390/ma14010200
Dimensionless Enthalpy as Characteristic Factor for Process Control in Laser Powder Bed Fusion
Hanemann, T.; Seyfert, C.; Holfelder, P.; Rota, A.; Heilmaier, M.
2020. Journal of Laser Micro/Nanoengineering, 15 (3), 257–266. doi:10.2961/jlmn.2020.03.2017
New Feedstock System for Fused Filament Fabrication of Sintered Alumina Parts
Nötzel, D.; Hanemann, T.
2020. Materials, 13 (19), Art.-Nr.: 4461. doi:10.3390/ma13194461
Dislocation-based Serrated Plastic Flow of High Entropy Alloys at Cryogenic Temperatures
Tirunilai, A. S.; Hanemann, T.; Weiss, K.-P.; Freudenberger, J.; Heilmaier, M.; Kauffmann, A.
2020. Acta materialia, 200, 980–991. doi:10.1016/j.actamat.2020.09.052
Investigations on the Processing of Ceramic Filled Inks for 3D InkJet Printing
Graf, D.; Qazzazie, A.; Hanemann, T.
2020. Materials, 13 (11), Art. Nr.: 2587. doi:10.3390/ma13112587
Development of a multi-material stereolithography 3D printing device
Khatri, B.; Frey, M.; Raouf-Fahmy, A.; Scharla, M.-V.; Hanemann, T.
2020. Micromachines, 11 (5), 532. doi:10.3390/mi11050532
3D Printing of ABS Barium Ferrite Composites
Hanemann, T.; Syperek, D.; Nötzel, D.
2020. Materials, 13 (6), Artice no: 1481. doi:10.3390/ma13061481
Comparison of cryogenic deformation of the concentrated solid solutions CoCrFeMnNi, CoCrNi and CoNi
Tirunilai, A. S.; Hanemann, T.; Reinhart, C.; Tschan, V.; Weiss, K.-P.; Laplanche, G.; Freudenberger, J.; Heilmaier, M.; Kauffmann, A.
2020. Materials science and engineering / A, 783, Art. Nr.: 139290. doi:10.1016/j.msea.2020.139290
Charakterisierung via FFF-Verfahren additiv gefertigter keramischer Bauteile
Nötzel, D.; Hanemann, T.; Eickhoff, R.
2019. Keramische Zeitschrift, 71 (6), 56–61. doi:10.1007/s42410-019-0074-7
Additives for Cycle Life Improvement of High‐Voltage LNMO‐Based Li‐Ion Cells
Hofmann, A.; Höweling, A.; Bohn, N.; Müller, M.; Binder, J. R.; Hanemann, T.
2019. ChemElectroChem, 6 (20), 5255–5263. doi:10.1002/celc.201901120
Powder injection molding of oxide ceramic CMC
Piotter, V.; Tueluemen, M.; Hanemann, T.; Hoffmann, M.; Ehreiser, B.
2019. Key engineering materials, 809, 148–152. doi:10.4028/www.scientific.net/KEM.809.148
Ceramic Injection Moulding using 3D-Printed Mould Inserts
Medesi, A.; Nötzel, D.; Wohlgemuth, J.; Franzreb, M.; Hanemann, T.
2019. CMT - Ceramics in Modern Technologies, 1 (2), 104–110. doi:10.29272/cmt.2019.0001
Orientation Dependent Fatigue Performance and Mechanisms of Selective Laser Melted Maraging Steel X3NiCoMoTi18-9-5
Damon, J.; Hanemann, T.; Dietrich, S.; Graf, G.; Lang, K.-H.; Schulze, V.
2019. International journal of fatigue, 127, 395–402. doi:10.1016/j.ijfatigue.2019.06.025
In-situ alloying of AlSi10Mg+Si using Selective Laser Melting to control the coefficient of thermal expansion
Hanemann, T.; Carter, L. N.; Habschied, M.; Adkins, N. J. E.; Attallah, M. M.; Heilmaier, M.
2019. Journal of alloys and compounds, 795, 8–18. doi:10.1016/j.jallcom.2019.04.260
The influence on sintering and properties of sodium niobate (NaNbO₃) ceramics by “non-stoichiometric” precursor compositions
Ruf, T.; Mauck, M.; Megnin, C.; Winkler, M.; Hillebrecht, H.; Hanemann, T.
2019. Materials chemistry and physics, 229, 437–447. doi:10.1016/j.matchemphys.2019.03.037
PVB/PEG-Based Feedstocks for Injection Molding of Alumina Microreactor Components
Medesi, A. J.; Nötzel, D.; Hanemann, T.
2019. Materials, 12 (8), Article: 1219. doi:10.3390/ma12081219
Influence of Al₂O₃ Nanoparticle Addition on a UV Cured Polyacrylate for 3D Inkjet Printing
Graf, D.; Burchard, S.; Crespo, J.; Megnin, C.; Gutsch, S.; Zacharias, M.; Hanemann, T.
2019. Polymers, 11 (4), Article: 633. doi:10.3390/polym11040633
Electrophoretic Deposition of BiVO₄ Layers on FTO Substrates for Photo Electro-chemical Cells
Megnin, C.; Mauck, M.; Hertkorn, D.; Hanemann, T.; Mueller, C.
2019. Ceramics silikáty, 63 (1), 124–130. doi:10.13168/cs.2019.0004
Overcoming oxygen inhibition effect by TODA in acrylate-based ceramic-filled inks
Rostami, N.; Graf, D.; Schranzhofer, L.; Hild, S.; Hanemann, T.
2019. Progress in organic coatings, 130, 221–225. doi:10.1016/j.porgcoat.2019.01.048
Investigation of Feedstock Preparation for Injection Molding of Oxide–Oxide Ceramic Composites
Tülümen, H. M.; Hanemann, T.; Piotter, V.; Stenzel, D.
2019. Journal of manufacturing and materials processing, 3 (1), 9. doi:10.3390/jmmp3010009
Polymerizable Ionic Liquids for Solid-State Polymer Electrolytes
Löwe, R.; Hanemann, T.; Hofmann, A.
2019. Molecules, 24 (2), Article: 324. doi:10.3390/molecules24020324
Fused Filament Fabrication of Small Ceramic Components
Nötzel, D.; Eickhoff, R.; Hanemann, T.
2018. Materials, 11 (8), 1463–1473. doi:10.3390/ma11081463
Fused Deposition Modeling of ABS-Barium Titanate Composites: A Simple Route towards Tailored Dielectric Devices
Khatri, B.; Lappe, K.; Habedank, M.; Mueller, T.; Megnin, C.; Hanemann, T.
2018. Polymers, 10 (6), 666–683. doi:10.3390/polym10060666
Inkjet-printed internal light extraction layers for organic light emitting diodes
Eiselt, T.; Preinfalk, J. B.; Bittkau, K.; Gomard, G.; Hanemann, T.; Lemmer, U.
2018. Flexible and printed electronics, 3 (1), Art.Nr. 015007. doi:10.1088/2058-8585/aaa37b
A 3D-Printable Polymer-Metal Soft-Magnetic Functional Composite—Development and Characterization
Khatri, B.; Lappe, K.; Noetzel, D.; Pursche, K.; Hanemann, T.
2018. Materials, 11 (2), Art.Nr. 189. doi:10.3390/ma11020189
Ink-jet printed optical waveguides
Bollgruen, P.; Wolfer, T.; Gleissner, U.; Mager, D.; Megnin, C.; Overmeyer, L.; Hanemann, T.; Korvink, J. G.
2017. Flexible and printed electronics, 2 (4), Art. Nr.: 045003. doi:10.1088/2058-8585/aa8ed6
Micron‐Sized Pored Membranes Based on Polyvinylidene Difluoride Hexafluoropropylene Prepared by Phase Inversion Techniques
Hofmann, A.; Thißen, E.; Migeot Matthias; Bohn, N.; Dietrich, S.; Hanemann, T.
2017. Polymers, 9 (10), 489/1–12. doi:10.3390/polym9100489
Process Development for the Ceramic Injection Molding of Oxide Chopped Fiber Reinforced Aluminum Oxide
Tülümen, M.; Hanemann, T.; Hoffmann, M. J.; Oberacker, R.; Piotter, V.
2017. Key engineering materials, 742, 231–237. doi:10.4028/www.scientific.net/KEM.742.231
Preventing Li-ion cell explosion during thermal runaway with reduced pressure
Hofmann, A.; Uhlmann, N.; Ziebert, C.; Wiegand, O.; Schmidt, A.; Hanemann, T.
2017. Applied thermal engineering, 124, 539–544. doi:10.1016/j.applthermaleng.2017.06.056
Light intensity influence on strontium Titanate based photo-electrochemical cells
Hertkorn, D.; Megnin, C.; Müller, C.; Hanemann, T.; Reinecke, H.
2017. Ceramics silikáty, 61 (3), 179–182. doi:10.13168/cs.2017.0014
Automated Misalignment Compensating Interconnects Based on Self-Written Waveguides
Günther, A.; Schneider, S.; Rezem, M.; Wang, Y.; Gleissner, U.; Hanemann, T.; Overmeyer, L.; Reithmeier, E.; Rahlves, M.; Roth, B.
2017. Journal of lightwave technology, 35 (13), 2678–2684. doi:10.1109/JLT.2017.2692305
Development and characterization of adjustable refractive index scattering epoxy acrylate polymer layers
Eiselt, T.; Preinfalk, J.; Gleißner, U.; Lemmer, U.; Hanemann, T.
2017. Optical engineering, 56 (3), 037105–1. doi:10.1117/1.OE.56.3.037105
Large-Area Screen-Printed Internal Extraction Layers for Organic Light-Emitting Diodes
Preinfalk, J. B.; Eiselt, T.; Wehlus, T.; Rohnacher, V.; Hanemann, T.; Gomard, G.; Lemmer, U.
2017. ACS photonics, 4 (4), 928–933. doi:10.1021/acsphotonics.6b01027
Refractive index increase of acrylate-based polymers by adding soluble aromatic guest-molecules
Gleißner, U.; Bonaus, S.; Megnin, C.; Hanemann, T.
2017. Polymers for advanced technologies, 28 (4), 506–510. doi:10.1002/pat.3920
Eignung des Kunststoff-Freiformens für metallische Bauteile
Spiller, Q.; Müller, T.; Plewa, K.; Hanemann, T.; Fleischer, J.
2016. VDI-Z integrierte Produktion, (11), 1–2
Development and characterization of high refractive index and high scattering acrylate polymer layers
Eiselt, T.; Gomard, G.; Preinfalk, J.; Gleißner, U.; Lemmer, U.; Hanemann, T.
2016. Optical engineering, 55 (11), Art. Nr. 117106. doi:10.1117/1.OE.55.11.117106
Surface Analytical Study Regarding the Solid Electrolyte Interphase Composition of Nanoparticulate SnO₂ Anodes for Li-Ion Batteries
Winkler, V.; Kilibarda, G.; Schlabach, S.; Szabo, D. V.; Hanemann, T.; Bruns, M.
2016. The journal of physical chemistry <Washington, DC> / C, 120 (43), 24706–24714. doi:10.1021/acs.jpcc.6b06662
Ink-jet printed fluorescent materials as light sources for planar optical waveguides on polymer foils
Bollgruen, P.; Gleissner, U.; Wolfer, T.; Megnin, C.; Mager, D.; Overmeyer, L.; Korvink, J. G.; Hanemann, T.
2016. Optical engineering, 55 (10), Art. Nr. 107107. doi:10.1117/1.OE.55.10.107107
The co-casting process: A new manufacturing process for ceramic multilayer devices
Medesi, A. J.; Hagedorn, F.; Schepperle, M.; Megnin, C.; Hanemann, T.
2016. Sensors and actuators <Lausanne> / A, 251, 266–275. doi:10.1016/j.sna.2016.07.033
The influence of photo initiators on refractive index and glass transition temperature of optically and rheologically adjusted acrylate based polymers
Gleißner, U.; Hanemann, T.; Megnin, C.; Wieland, F.
2016. Polymers for advanced technologies, 27 (10), 1294–1300. doi:10.1002/pat.3793
Lowering the sintering temperature of barium strontium titanate bulk ceramics by barium strontium titanate-gel and BaCu(B₂O₅)
Gleissner, U.; Megnin, C.; Benkler, M.; Hertkorn, D.; Elsenheimer, H. C.; Schumann, K.; Paul, F.; Hanemann, T.
2016. Ceramics silikáty, 60 (1), 1–11. doi:10.13168/cs.2016.0001
Optically and rheologically tailored polymers for applications in integrated optics
Gleißner, U.; Khatri, B.; Megnin, C.; Sherman, S.; Xiao, Y.; Hofmann, M.; Günther, A.; Rahlves, M.; Roth, B.; Zappe, H.; Hanemann, T.
2016. Sensors and Actuators, A: Physical, 241, 224–230. doi:10.1016/j.sna.2016.02.029
Tailoring Optical and Rheological Properties of Host-guest Systems Based on an Epoxy Acrylate
Gleißner, U.; Hanemann, T.
2016. Materials Today: Proceedings, 3 (2), 289–293. doi:10.1016/j.matpr.2016.01.071
Investigation of Binary Mixtures Containing 1-Ethyl-3-methylimidazolium Bis(trifluoromethanesulfonyl)azanide and Ethylene Carbonate
Hofmann, A.; Migeot, M.; Hanemann, T.
2016. Journal of Chemical and Engineering Data, 61 (1), 114–123. doi:10.1021/acs.jced.5b00338
Einfluss der Masseaufbereitung auf die Verarbeitungseigenschaften für das Mikro-Pulverspritzgießen [Loseblatt-Sammlung]
Piotter, V.; Hanemann, T.
2015. Technische Keramische Werkstoffe - 147.Ergänzungslieferung - Juli 2015. Hrsg.: J. Kriegesmann, Kapitel 3.4.8.10, Dt. Wirtschaftsdienst
New TiO₂ double layer nano particulate photo anode for highly efficient dye sensitized solar cells (DSSC)
Kilibarda, G.; Schlabach, S.; Szabo, D. V.; Hanemann, T.
2015. International Journal of Electrochemical Science, 10 (10), 9988–10002
Investigation of the oxidative stability of Li-ion battery electrolytes using cathode materials
Hofmann, A.; Werth, F.; Höweling, A.; Hanemann, T.
2015. ECS electrochemistry letters, 4 (12), A141-A144. doi:10.1149/2.0071512eel
Interaction of high flash point electrolytes and PE-based separators for Li-ion batteries
Hofmann, A.; Kaufmann, C.; Müller, M.; Hanemann, T.
2015. International Journal of Molecular Sciences, 16 (9), 20258–20276. doi:10.3390/ijms160920258
A novel co-casting process for piozoelectric multilayer ceramics with silver inner electrodes
Medesi, A. J.; Meier, H.; Megnin, C.; Hanemann, T.
2015. Procedia engineering, 120, 124–129. doi:10.1016/j.proeng.2015.08.581
Polymers with customizable optical and rheological properties for printable single-mode waveguides
Gleißner, U.; Sherman, S.; Megnin, C.; Zappe, H.; Hanemann, T.
2015. Procedia engineering, 120, 3–6. doi:10.1016/j.proeng.2015.08.553
Electrolyte mixtures based on ethylene carbonate and dimethyl sulfone for Li-ion batteries with improved safety characteristics
Hofmann, A.; Migeot, M.; Thißen, E.; Schulz, M.; Heinzmann, R.; Indris, S.; Bergfeldt, T.; Lei, B.; Ziebert, C.; Hanemann, T.
2015. ChemSusChem, 8, 1892–1900. doi:10.1002/cssc.201500263
Cladded self-written multimode step-index waveguides using a one-polymer approach
Günther, A.; Petermann, A. B.; Gleissner, U.; Hanemann, T.; Reithmeier, E.; Rahlves, M.; Meinhardt-Wollweber, M.; Morgner, U.; Roth, B.
2015. Optics letters, 40 (8), 1830–1833. doi:10.1364/OL.40.001830
Morphology and oxygen vacancy investigation of strontium titanate-based photo electrochemical cells
Hertkorn, D.; Benkler, M.; Gleißner, U.; Büker, F.; Megnin, C.; Müller, C.; Hanemann, T.; Reinecke, H.
2015. Journal of materials science, 50 (1), 40–48. doi:10.1007/s10853-014-8563-y
Low temperature sintering of PZT
Medesi, A.; Greiner, T.; Benkler, M.; Megnin, C.; Hanemann, T.
2014. Journal of physics / Conference Series, 557, 012132/1–5. doi:10.1088/1742-6596/557/1/012132
Mixtures of ionic liquid and sulfolane as electrolytes for Li-ion batteries
Hofmann, A.; Schulz, M.; Indris, S.; Heinzmann, R.; Hanemann, T.
2014. Electrochimica acta, 147, 704–711. doi:10.1016/j.electacta.2014.09.111
Polymer-based route to ferroelectric lead strontium titanate thin films
Benkler, M.; Hobmaier, J.; Gleißner, U.; Medesi, A.; Hertkorn, D.; Hanemann, T.
2014. Journal of applied polymer science, 131, 40901/1–7. doi:10.1002/app.40901
LIGA2.X process for mass production of single polymeric LIGA micro parts
Heneka, J.; Guttmann, M.; Plewa, K.; Mohr, J.; Hanemann, T.; Saile, V.
2014. Microsystem technologies, 20, 1955–1960. doi:10.1007/s00542-013-2015-5
Ferroelectric thin film fabrication by direct UV-lithography
Benkler, M.; Paul, F.; Schott, J.; Hanemann, T.
2014. Microsystem technologies, 20, 1859–1867. doi:10.1007/s00542-013-1963-0
Anodic aluminum dissolution in conducting salt containing electrolytes for lithium-ion batteries
Hofmann, A.; Schulz, M.; Winkler, V.; Hanemann, T.
2014. Journal of the Electrochemical Society, 161 (3), A431-A438. doi:10.1149/2.094403jes
Electrochemical performance of tin-based nano-composite electrodes using a vinylene carbonate-containing electrolyte for Li-ion cells
Kilibarda, G.; Schlabach, S.; Winkler, V.; Bruns, M.; Hanemann, T.; Szabo, D. V.
2014. Journal of power sources, 263 (October), 145–153. doi:10.1016/j.jpowsour.2014.04.030
Novel Conductive Gel Polymers Based on Acrylates and Ionic Liquids
Tosoni, M.; Schulz, M.; Hanemann, T.
2014. International Journal of Electrochemical Science, 9 (7), 3602–3617
Modeling of the electrical properties of bidirectional alkaline air electrodes
Büker, F.; Müller, C.; Hanemann, T.; Hertkorn, D.; Reinecke, H.
2014. Journal of the Electrochemical Society, 161, A1019-A1022. doi:10.1149/2.063406jes
Viscosity and refractive index tailored methacrylate-based polymers
Hanemann, T.; Honnef, K.
2014. Journal of applied polymer science, 131, 40194/1–7. doi:10.1002/app.40194
Anodic aluminum dissolution of LiTFSA containing electrolytes for Li-ion-batteries
Hofmann, A.; Merklein, L.; Schulz, M.; Hanemann, T.
2014. Electrochimica acta, 116, 388–395. doi:10.1016/j.electacta.2013.11.085
Metal-ceramic-composite casting of complex micro components
Buqezi-Ahmeti, D.; Maisenbacher, J.; Gibmeier, J.; Hanemann, T.
2013. Microsystem Technologies, 19 (2), 159–165. doi:10.1007/s00542-012-1624-8
Influence of Environmental Temperature on the Electrochemical Performance of a Tin-Based Nano-Electrode in Lithium Ion Cells
Kilibarda, G.; Schlabach, S.; Hanemann, T.; Szabo, D. V.
2013. International journal of electrochemical science, 8 (5), 6212–6219
Effect of Conducting Salts in Ionic Liquid based Electrolytes: Viscosity, Conductivity, and Li-Ion Cell Studies
Hofmann, A.; Schulz, M.; Hanemann, T.
2013. International journal of electrochemical science, 8 (8), 10170–10189
Thickness variation of electrophoretically deposited strontium titanate films for photoelectrochemical energy conversion
Hertkorn, D.; Elsenheimer, H. C.; Bruch, R.; Paul, F.; Müller, C.; Hanemann, T.; Reinecke, H.
2013. Journal of Applied Physics, 114, 027020/1–5. doi:10.1063/1.4811817
Investigation of the degradation of SnO₂ electrodes for use in Li-ion cells
Kilibarda, G.; Szabo, D. V.; Schlabach, S.; Winkler, V.; Bruns, M.; Hanemann, T.
2013. Journal of power sources, 233, 139–147. doi:10.1016/j.jpowsour.2013.01.099
Green-conscious ceramic injection moulding
Weber, O.; Hanemann, T.
2013. Ceramic engineering and science proceedings, 33 (8), 63–71
Ceramic injection moulding using a partially water-soluble binder system: Effect of back-bone polymers on the process
Weber, O.; Hanemann, T.
2013. Ceramic engineering and science proceedings, 33 (8), 53–61
Gel electrolytes based on ionic liquids for advanced lithium polymer batteries
Hofmann, A.; Schulz, M.; Hanemann, T.
2013. Electrochimica Acta, 89, 823–831. doi:10.1016/j.electacta.2012.10.144
Polymer nanocomposites for optical applications
Szabo, D. V.; Hanemann, T.
2012. Gao, F. [Hrsg.] Advances in Polymer Nanocomposites : Types and Applications Oxford [u.a.] : Woodhead Publ., 2012 (Woodhead Publishing in Materials), 567–604
Simulation of micro powder injection moulding : Powder segregation and yield stress effects during form filling
Greiner, A.; Kauzlaric, D.; Korvink, J. G.; Heldele, R.; Schulz, M.; Piotter, V.; Hanemann, T.; Weber, O.; Haußelt, J.
2011. Journal of the European Ceramic Society, 31 (14), 2525–2534. doi:10.1016/j.jeurceramsoc.2011.02.008
Fatty acid surfactant structure-feedstock flow properties: correlation for high-pressure ceramic injection molding
Hanemann, T.; Heldele, R.
2011. International Journal of Applied Ceramic Technology, 8, 1296–1304. doi:10.1111/j.1744-7402.2011.02612.x
Tailoring the optical and thermomechanical properties of polymer host-guest systems
Hanemann, T.; Honnef, K.
2011. Journal of Applied Polymer Science, 122, 3514–3519. doi:10.1002/app.34759
Influence of stearic acid concentration on the processing of ZrO₂-containing feedstocks suitable for micropowder injection molding
Hanemann, T.; Heldele, R.; Mueller, T.; Haußelt, J.
2011. International Journal of Applied Ceramic Technology, 8, 865–872. doi:10.1111/j.1744-7402.2010.02519.x
New methacrylate-based feedstock systems for micro powder injection moulding
Hanemann, T.; Honnef, K.; Müller, T.; Weber, O.
2011. Microsystem Technologies, 17, 451–457. doi:10.1007/s00542-011-1243-9
Development of new polymer-BaTiO₃-composites with improved permittivity for embedded capacitors
Hanemann, T.; Gesswein, H.; Schumacher, B.
2011. Microsystem Technologies, 17, 195–201. doi:10.1007/s00542-010-1197-3
Nanoparticles in polymer-matrix composites
Schlabach, S.; Ochs, R.; Hanemann, T.; Szabo, D. V.
2011. Microsystem technologies, 17, 183–193. doi:10.1007/s00542-010-1176-8
Development of two-component micropowder injection molding (2C MicroPIM): characteristics of applicable materials
Ruh, A.; Hanemann, T.; Heldele, R.; Piotter, V.; Ritzhaupt-Kleissl, H. J.; Hausselt, J.
2011. International Journal of Applied Ceramic Technology, 8, 194–202. doi:10.1111/j.1744-7402.2009.02427.x
Polymer-nanoparticle composites: From synthesis to modern applications
Hanemann, T.; Szabo, D. V.
2010. Materials, 3, 3468–3517. doi:10.3390/ma3063468
Temperature treatment of nano-scaled barium titanate filler to improve the dielectric properties of high-k polymer based composites
Schumacher, B.; Geßwein, H.; Haußelt, J.; Hanemann, T.
2010. Microelectronic Engineering, 87, 1978–83. doi:10.1016/j.mee.2009.12.018
Modern alchemy: ceramic feedstock optimization by surfactant screening
Hanemann, T.; Heldele, R.
2010. Ceramic Forum International - Berichte der Deutschen Keramischen Gesellschaft, 87 (4), E38-E40
Metal and ceramic parts fabricated by microminiature powder injection molding
Piotter, V.; Hanemann, T.; Heldele, R.; Müller, M.; Müller, T.; Plewa, K.; Ruh, A.
2010. International Journal of Powder Metallurgy, 46 (2), 21–28
Tuning the dielectric constant of polymers using organic dopants
Hanemann, T.; Schumacher, B.; Haußelt, J.
2010. Microelectronic Engineering, 87, 533–36. doi:10.1016/j.mee.2009.05.015