Projects
- Project 1: Single-source precursor synthesis of ceramic nanocomposites for (ultra)high-temperature applications
- Project 2: Preparation of ceramic coatings based on ultrahigh-temperature ceramic nanocomposites (UHTC-NCs) from precursors
- Project 3: Characterization of materials compounds from composite materials
- Project 4: Thermomechanical properties of ceramic-nanocomposite-based monoliths and coatings
- Project 5: High-temperature oxidation behaviour of ceramic coatings based on polymer-derived ceramic nanocomposites
- Project 6: Evolution of mechanical properties of coating systems during exposure at high temperature
- Project 7: High-temperature stability in harsh environments
- Project 8: Evaluation of additive manufacturing for RM-Si based substrates
- Project 9: Phase-field simulations of multiphase microstructural evolution in Mo-Si-based ternary alloy
- Project 10: Small-scale deformation and failure
- Project 11: Materials thermodynamics, kinetics and constitution in the Mo-Si-Ti-Cr-X system
- Project 12: Ab-initio calculations of bulk and interface properties at high temperatures
- Project 13: High temperature creep and fatigue of novel MatCom-ComMat systems (3rd period)
- Project 14: Elementary nanoscale mechanisms which govern nucleation, growth, oxidation and deformation processes in the high temperature Mo-Si-Ti system: Advanced in situ and ex situ TEM analysis