MatCom-ComMat: Materials Compounds from Composite Materials for Applications in Extreme Conditions

The main scope of the RTG relates to the development, characterization and modelling of novel, revolutionary multi-phase composite systems capable of withstanding temperatures substantially beyond 1300°C and harsh environmental conditions (e.g., oxidative, corrosive, erosive atmospheres) as far as mechanical behaviour, environmental resistance and durability are concerned. This will be achieved via a materials combination consisting of metallic/intermetallic alloys based on refractory metal silicide systems (e.g. Mo-Si-B-X, X = Nb, Fe, Ti, Hf…) as substrates and polymer-derived ceramic nanocomposites based on Si(M)CY (M = B, Zr, Hf and Y = O, N) as materials of choice for graded coatings. The metallic/intermetallic alloys may provide adequate deformability and toughness at ambient temperatures combined with excellent high-temperature microstructural stability and creep resistance, whereas the graded polymer derived ceramic nanocomposite coatings will also offer self-healing capability in addition to extremely low intrinsic thermal conductivities and excellent stability in aggressive operation conditions, respectively. Beside their unique property combinations, the two materials classes are highly attractive because of the possibility to adjust their coefficients of thermal expansion to perfectly match one another and consequently to keep thermomechanical stresses in the target multi-layered systems at a minimum. This may give rise to an extended lifetime of components in foreseen application.


Researchers

Principal investigators
Name Institute
heilmaier
Prof. Spokesperson Institute for Applied Materials (KIT)
riedel
Prof. Co-Spokesperson Department of Materials and Earth Sciences (TUD)
albe
Prof.   Department of Materials and Earth Sciences (TUD)
galetz
PD   DECHEMA-Forschungsinstitut (DFI)
kleebe
Prof.   Department of Materials and Earth Sciences (TUD)
lepple
Dr.   DECHEMA-Forschungsinstitut (DFI)
nestler
Prof.   Institute for Applied Materials (KIT)
oechsner
Prof.   Staatliche Materialprüfungsanstalt Darmstadt (TUD)
pundt
Prof.   Institute for Applied Materials (KIT)
schwaiger
Prof.   Institut für Energie- und Klimaforschung (former KIT, now FZJ)
seifert
Prof.   Institute for Applied Materials (KIT)
xu
Prof.   Department of Materials and Earth Sciences (TUD)
Members
Name Project Institute
bernauer
M.Sc. P1, PhD student Department of Materials and Earth Sciences (TUD)
winkens
M.Sc. P10, PhD student Institute for Applied Materials (KIT)
czerny
M.Sc. P11, PhD student Institute for Applied Materials (KIT)
kasdorf
M.Sc. P12, PhD student Department of Materials and Earth Sciences (TUD)
kredel
M.Sc. P2, PhD student Department of Materials and Earth Sciences (TUD)
thor
M.Sc. P3, PhD student Department of Materials and Earth Sciences (TUD)
yang
M.Sc. P4, PhD student Department of Materials and Earth Sciences (TUD)
Fathidoost
M.Sc. P4, assoc. PhD student Department of Materials and Earth Sciences (TUD)
petry
M.Sc. P5, PhD student DECHEMA-Forschungsinstitut (DFI)
filipovic
M.Sc. P6, PhD student Staatliche Materialprüfungsanstalt Darmstadt (TUD)
kontermann
Dr. P6, assoc. PostDoc Staatliche Materialprüfungsanstalt Darmstadt (TUD)
beck
M.Sc. P7, PhD student DECHEMA-Forschungsinstitut (DFI)
ulrich
Dr. P7, assoc. PostDoc DECHEMA-Forschungsinstitut (DFI)
hinrichs
M.Sc. P8, PhD student Institute for Applied Materials (KIT)
eusterholz
M.Sc. P8, assoc. PhD student Institute for Applied Materials (KIT)
schliephake
Dr. P8, assoc. PostDoc Institute for Applied Materials (KIT)
cai
M.Sc. P9, PhD student Institute for Applied Materials (KIT)
kellner
Dr. P9, assoc. PostDoc Institute for Applied Materials (KIT)

Publications


2021
Heterogeneous equilibria in the systems Mo-Si-Ti and Mo-Si-Ti-B.
Czerny, A.; Rohde, M.; Hausner, C.; Seifert, H. J.
2021, Oktober 7. Intermetallics (2021), Staffelstein, Deutschland, 4.–8. Oktober 2021
Heterogeneous phase equilibria in the Mo-Si-Ti system.
Czerny, A.; Rohde, M.; Hausner, C.; Seifert, H. J.
2021, September 16. European Congress and Exhibition on Advanced Materials and Processes (EUROMAT 2021), Online, 13.–17. September 2021
Microstructural and Chemical Constitution of the Oxide Scale formed on a Pesting-Resistant Mo-Si-Ti Alloy.
Obert, S.; Kauffmann, A.; Seils, S.; Boll, T.; Kauffmann-Weiss, S.; Chen, H.; Anton, R.; Heilmaier, M.
2021. Corrosion science, 178, Art.-Nr. 109081. doi:10.1016/j.corsci.2020.109081
Protective Diffusion Coatings on Refractory Metals.
Beck, K.; Ulrich, A. S.; Galetz, M. C.
2021. Materials Science and Technology: Technical Meeting and Exhibition (MS&T 2021), Colombus, USA, 17.–21. Oktober 2021
Flexible Powder Production for Additive Manufacturing of Refractory Metal-Based Alloys.
Hinrichs, F.; Kauffmann, A.; Schliephake, D.; Seils, S.; Obert, S.; Ratschbacher, K.; Allen, M.; Pundt, A.; Heilmaier, M.
2021. Metals, 11 (11), Article no: 1723. doi:10.3390/met11111723
Flexible powder production for additive manufacturing of refractory metal alloys.
Hinrichs, F.; Schliephake, D.; Seils, S.; Obert, S.; Kauffmann, A.; Ratschbacher, K.; Allen, M.; Heilmaier, M.
2021. Intermetallics (2021), Staffelstein, Deutschland, 4.–8. Oktober 2021
Protective Chromium Diffusion Coatings on Refractory Metals.
Beck, K.; Ulrich, A. S.; Hinrichs, F.; Heilmaier, M.; Galetz, M. C.
2021. European Congress and Exhibition on Advanced Materials and Processes (EUROMAT 2021), Online, 13.–17. September 2021
Investigation of the Oxidation Resistance of ZrB2-based Monoliths Using Polymer-Derived Si(Zr,B)CN as Sintering Aid.
Petry, N.-C.; Ulrich, A. S.; Feng, B.; Ionescu, E.; Galetz, M. C.; Lepple, M.
2021. European Congress and Exhibition on Advanced Materials and Processes (EUROMAT 2021), Online, 13.–17. September 2021
Protective Aluminum and Chromium Diffusion Coatings for Refractory Metals at High Temperature Exposure.
Ulrich, A. S.; Beck, K.; Galetz, M. C.
2021. Intermetallics (2021), Staffelstein, Deutschland, 4.–8. Oktober 2021
The Creep and Oxidation Behaviour of Pesting-Resistant -Containing Eutectic-Eutectoid Mo-Si-Ti Alloys.
Obert, S.; Kauffmann, A.; Pretzler, R.; Schliephake, D.; Hinrichs, F.; Heilmaier, M.
2021. Metals, 11 (1), Art.-Nr.: 169. doi:10.3390/met11010169
2020
Characterisation of the oxidation and creep behaviour of novel Mo-Si-Ti alloys.
Obert, S.; Kauffmann, A.; Heilmaier, M.
2020. Acta materialia, 184, 132–142. doi:10.1016/j.actamat.2019.11.045
On the chemical and microstructural requirements for the pesting-resistance of Mo-Si-Ti alloys.
Obert, S.; Kauffmann, A.; Seils, S.; Schellert, S.; Weber, M.; Gorr, B.; Christ, H.-J.; Heilmaier, M.
2020. Journal of materials research and technology, 9 (4), 8556–8567. doi:10.1016/j.jmrt.2020.06.002
2019
Constitution, oxidation and creep of eutectic and eutectoid Mo-Si-Ti alloys.
Schliephake, D.; Kauffmann, A.; Cong, X.; Gombola, C.; Azim, M.; Gorr, B.; Christ, H.-J.; Heilmaier, M.
2019. Intermetallics, 104, 133–142. doi:10.1016/j.intermet.2018.10.028
2017
Phase-field simulation of the microstructure evolution in the eutectic NiAl-34Cr system.
Kellner, M.; Sprenger, I.; Steinmetz, P.; Hötzer, J.; Nestler, B.; Heilmaier, M.
2017. Computational materials science, 128, 379–387. doi:10.1016/j.commatsci.2016.11.049
2016
Large-scale phase-field simulations of ternary eutectic microstructure evolution.
Steinmetz, P.; Hötzer, J.; Kellner, M.; Dennstedt, A.; Nestler, B.
2016. Computational materials science, 117, 205–214. doi:10.1016/j.commatsci.2016.02.001
Phase-field simulations of spiral growth during directional ternary eutectic solidification.
Hötzer, J.; Steinmetz, P.; Jainta, M.; Schulz, S.; Kellner, M.; Nestler, B.; Genau, A.; Dennstedt, A.; Bauer, M.; Köstler, H.; Rüde, U.
2016. Acta materialia, 106, 249–259. doi:10.1016/j.actamat.2015.12.052
2015
A method for coupling the phase-field model based on a grand-potential formalism to thermodynamic databases.
Choudhury, A.; Kellner, M.; Nestler, B.
2015. Current opinion in solid state & materials science, 19 (5), 287–300. doi:10.1016/j.cossms.2015.03.003