MatCom-ComMat: Materials Compounds from Composite Materials for Applications in Extreme Conditions

The main scope of the RTG relates to the development, characterization and modelling of novel, revolutionary multi-phase composite systems capable of withstanding temperatures substantially beyond 1300°C and harsh environmental conditions (e.g., oxidative, corrosive, erosive atmospheres) as far as mechanical behaviour, environmental resistance and durability are concerned. This will be achieved via a materials combination consisting of metallic/intermetallic alloys based on refractory metal silicide systems (e.g. Mo-Si-B-X, X = Nb, Fe, Ti, Hf…) as substrates and polymer-derived ceramic nanocomposites based on Si(M)CY (M = B, Zr, Hf and Y = O, N) as materials of choice for graded coatings. The metallic/intermetallic alloys may provide adequate deformability and toughness at ambient temperatures combined with excellent high-temperature microstructural stability and creep resistance, whereas the graded polymer derived ceramic nanocomposite coatings will also offer self-healing capability in addition to extremely low intrinsic thermal conductivities and excellent stability in aggressive operation conditions, respectively. Beside their unique property combinations, the two materials classes are highly attractive because of the possibility to adjust their coefficients of thermal expansion to perfectly match one another and consequently to keep thermomechanical stresses in the target multi-layered systems at a minimum. This may give rise to an extended lifetime of components in foreseen application.


Researchers

Principal investigators
Name Institute
lepple
Dr.   DECHEMA-Forschungsinstitut (DFI)
galetz
PD   DECHEMA-Forschungsinstitut (DFI)
pundt
Prof.   Institute for Applied Materials (KIT)
xu
Prof.   Department of Materials and Earth Sciences (TUD)
nestler
Prof.   Institute for Applied Materials (KIT)
seifert
Prof.   Institute for Applied Materials (KIT)
kleebe
Prof.   Department of Materials and Earth Sciences (TUD)
albe
Prof.   Department of Materials and Earth Sciences (TUD)
heilmaier
Prof. Spokesperson Institute for Applied Materials (KIT)
oechsner
Prof.   Staatliche Materialprüfungsanstalt Darmstadt (TUD)
riedel
Prof. Co-Spokesperson Department of Materials and Earth Sciences (TUD)
schwaiger
Prof.   Institut für Energie- und Klimaforschung (former KIT, now FZJ)
Members
Name Project Institute
bernauer
M.Sc. P1, PhD student Department of Materials and Earth Sciences (TUD)
kredel
M.Sc. P2, PhD student Department of Materials and Earth Sciences (TUD)
thor
M.Sc. P3, PhD student Department of Materials and Earth Sciences (TUD)
yang
M.Sc. P4, PhD student Department of Materials and Earth Sciences (TUD)
Fathidoost
M.Sc. P4, assoc. PhD student Department of Materials and Earth Sciences (TUD)
petry
M.Sc. P5, PhD student DECHEMA-Forschungsinstitut (DFI)
filipovic
M.Sc. P6, PhD student Staatliche Materialprüfungsanstalt Darmstadt (TUD)
kontermann
Dr. P6, assoc. PostDoc Staatliche Materialprüfungsanstalt Darmstadt (TUD)
beck
M.Sc. P7, PhD student DECHEMA-Forschungsinstitut (DFI)
ulrich
Dr. P7, assoc. PostDoc DECHEMA-Forschungsinstitut (DFI)
hinrichs
M.Sc. P8, PhD student Institute for Applied Materials (KIT)
schliephake
Dr. P8, assoc. PostDoc Institute for Applied Materials (KIT)
eusterholz
M.Sc. P8, assoc. PhD student Institute for Applied Materials (KIT)
cai
M.Sc. P9, PhD student Institute for Applied Materials (KIT)
kellner
Dr. P9, assoc. PostDoc Institute for Applied Materials (KIT)
winkens
M.Sc. P10, PhD student Institute for Applied Materials (KIT)
czerny
M.Sc. P11, PhD student Institute for Applied Materials (KIT)
kasdorf
M.Sc. P12, PhD student Department of Materials and Earth Sciences (TUD)

Publications (preliminary studies)


The Creep and Oxidation Behaviour of Pesting-Resistant -Containing Eutectic-Eutectoid Mo-Si-Ti Alloys.
Obert, S.; Kauffmann, A.; Pretzler, R.; Schliephake, D.; Hinrichs, F.; Heilmaier, M.
2021. Metals, 11 (1), Art.-Nr.: 169. doi:10.3390/met11010169
Microstructural and Chemical Constitution of the Oxide Scale formed on a Pesting-Resistant Mo-Si-Ti Alloy.
Obert, S.; Kauffmann, A.; Seils, S.; Boll, T.; Kauffmann-Weiss, S.; Chen, H.; Anton, R.; Heilmaier, M.
2021. Corrosion science, 178, Art.-Nr. 109081. doi:10.1016/j.corsci.2020.109081
On the chemical and microstructural requirements for the pesting-resistance of Mo-Si-Ti alloys.
Obert, S.; Kauffmann, A.; Seils, S.; Schellert, S.; Weber, M.; Gorr, B.; Christ, H.-J.; Heilmaier, M.
2020. Journal of materials research and technology, 9 (4), 8556–8567. doi:10.1016/j.jmrt.2020.06.002
Characterisation of the oxidation and creep behaviour of novel Mo-Si-Ti alloys.
Obert, S.; Kauffmann, A.; Heilmaier, M.
2020. Acta materialia, 184, 132–142. doi:10.1016/j.actamat.2019.11.045
Constitution, oxidation and creep of eutectic and eutectoid Mo-Si-Ti alloys.
Schliephake, D.; Kauffmann, A.; Cong, X.; Gombola, C.; Azim, M.; Gorr, B.; Christ, H.-J.; Heilmaier, M.
2019. Intermetallics, 104, 133–142. doi:10.1016/j.intermet.2018.10.028
Phase-field simulation of the microstructure evolution in the eutectic NiAl-34Cr system.
Kellner, M.; Sprenger, I.; Steinmetz, P.; Hötzer, J.; Nestler, B.; Heilmaier, M.
2017. Computational materials science, 128, 379–387. doi:10.1016/j.commatsci.2016.11.049
Large-scale phase-field simulations of ternary eutectic microstructure evolution.
Steinmetz, P.; Hötzer, J.; Kellner, M.; Dennstedt, A.; Nestler, B.
2016. Computational materials science, 117, 205–214. doi:10.1016/j.commatsci.2016.02.001
Phase-field simulations of spiral growth during directional ternary eutectic solidification.
Hötzer, J.; Steinmetz, P.; Jainta, M.; Schulz, S.; Kellner, M.; Nestler, B.; Genau, A.; Dennstedt, A.; Bauer, M.; Köstler, H.; Rüde, U.
2016. Acta materialia, 106, 249–259. doi:10.1016/j.actamat.2015.12.052