MatCom-ComMat: Materials Compounds from Composite Materials for Applications in Extreme Conditions

The main scope of the RTG relates to the development, characterization and modelling of novel, revolutionary multi-phase composite systems capable of withstanding temperatures substantially beyond 1300°C and harsh environmental conditions (e.g., oxidative, corrosive, erosive atmospheres) as far as mechanical behaviour, environmental resistance and durability are concerned. This will be achieved via a materials combination consisting of metallic/intermetallic alloys based on refractory metal silicide systems (e.g. Mo-Si-B-X, X = Nb, Fe, Ti, Hf…) as substrates and polymer-derived ceramic nanocomposites based on Si(M)CY (M = B, Zr, Hf and Y = O, N) as materials of choice for graded coatings. The metallic/intermetallic alloys may provide adequate deformability and toughness at ambient temperatures combined with excellent high-temperature microstructural stability and creep resistance, whereas the graded polymer derived ceramic nanocomposite coatings will also offer self-healing capability in addition to extremely low intrinsic thermal conductivities and excellent stability in aggressive operation conditions, respectively. Beside their unique property combinations, the two materials classes are highly attractive because of the possibility to adjust their coefficients of thermal expansion to perfectly match one another and consequently to keep thermomechanical stresses in the target multi-layered systems at a minimum. This may give rise to an extended lifetime of components in foreseen application.


Researchers

Principal investigators
Name Institute
heilmaier
Prof. Spokesperson Institute for Applied Materials (KIT)
kleebe
Prof.   Department of Materials and Earth Sciences (TUD)
lepple
Dr.   DECHEMA-Forschungsinstitut (DFI)
albe
Prof.   Department of Materials and Earth Sciences (TUD)
galetz
PD   DECHEMA-Forschungsinstitut (DFI)
nestler
Prof.   Institute for Applied Materials (KIT)
schwaiger
Prof.   Institut für Energie- und Klimaforschung (former KIT, now FZJ)
riedel
Prof. Co-Spokesperson Department of Materials and Earth Sciences (TUD)
seifert
Prof.   Institute for Applied Materials (KIT)
xu
Prof.   Department of Materials and Earth Sciences (TUD)
pundt
Prof.   Institute for Applied Materials (KIT)
oechsner
Prof.   Staatliche Materialprüfungsanstalt Darmstadt (TUD)
Members
Name Project Institute
bernauer
M.Sc. P1, PhD student Department of Materials and Earth Sciences (TUD)
kredel
M.Sc. P2, PhD student Department of Materials and Earth Sciences (TUD)
thor
M.Sc. P3, PhD student Department of Materials and Earth Sciences (TUD)
yang
M.Sc. P4, PhD student Department of Materials and Earth Sciences (TUD)
Fathidoost
M.Sc. P4, assoc. PhD student Department of Materials and Earth Sciences (TUD)
petry
M.Sc. P5, PhD student DECHEMA-Forschungsinstitut (DFI)
filipovic
M.Sc. P6, PhD student Staatliche Materialprüfungsanstalt Darmstadt (TUD)
kontermann
Dr. P6, assoc. PostDoc Staatliche Materialprüfungsanstalt Darmstadt (TUD)
beck
M.Sc. P7, PhD student DECHEMA-Forschungsinstitut (DFI)
ulrich
Dr. P7, assoc. PostDoc DECHEMA-Forschungsinstitut (DFI)
hinrichs
M.Sc. P8, PhD student Institute for Applied Materials (KIT)
schliephake
Dr. P8, assoc. PostDoc Institute for Applied Materials (KIT)
eusterholz
M.Sc. P8, assoc. PhD student Institute for Applied Materials (KIT)
cai
M.Sc. P9, PhD student Institute for Applied Materials (KIT)
kellner
Dr. P9, assoc. PostDoc Institute for Applied Materials (KIT)
winkens
M.Sc. P10, PhD student Institute for Applied Materials (KIT)
czerny
M.Sc. P11, PhD student Institute for Applied Materials (KIT)
kasdorf
M.Sc. P12, PhD student Department of Materials and Earth Sciences (TUD)

Publications


2022
A diffuse-interface model of anisotropic interface thermal conductivity and its application in thermal homogenization of composites
Yang, Y.; Fathidoost, M.; Oyedeji, T. D.; Bondi, P.; Zhou, X.; Egger, H.; Xu, B.-X.
2022. Scripta materialia, 212, Article no: 114537. doi:10.1016/j.scriptamat.2022.114537
Validated dimensionless scaling law for melt pool width in laser powder bed fusion
Yang, Y.; Großmann, A.; Kühn, P.; Mölleney, J.; Kropholler, L.; Mittelstedt, C.; Xu, B.-X.
2022. Journal of materials processing technology, 299, Article no: 117316. doi:10.1016/j.jmatprotec.2021.117316
Oxidation resistance of ZrB2-based monoliths using polymer-derived Si(Zr,B)CN as sintering aid
Petry, N.-C.; Ulrich, A. S.; Feng, B.; Ionescu, E.; Galetz, M. C.; Lepple, M.
2022. Journal of the American Ceramic Society. doi:10.1111/jace.18473
2021
3D‐multilayer simulation of microstructure and mechanical properties of porous materials by selective sintering
Zhou, X.; Yang, Y.; Bharech, S.; Lin, B.; Schröder, J.; Xu, B.-X.
2021. GAMM-Mitteilungen, 44 (4, SI), e202100017. doi:10.1002/gamm.202100017
Heterogeneous equilibria in the systems Mo-Si-Ti and Mo-Si-Ti-B
Czerny, A.; Rohde, M.; Hausner, C.; Seifert, H. J.
2021, Oktober 7. Intermetallics (2021), Staffelstein, Deutschland, 4.–8. Oktober 2021
Heterogeneous phase equilibria in the Mo-Si-Ti system
Czerny, A.; Rohde, M.; Hausner, C.; Seifert, H. J.
2021, September 16. European Congress and Exhibition on Advanced Materials and Processes (EUROMAT 2021), Online, 13.–17. September 2021
Microstructural and Chemical Constitution of the Oxide Scale formed on a Pesting-Resistant Mo-Si-Ti Alloy
Obert, S.; Kauffmann, A.; Seils, S.; Boll, T.; Kauffmann-Weiss, S.; Chen, H.; Anton, R.; Heilmaier, M.
2021. Corrosion science, 178, Art.-Nr. 109081. doi:10.1016/j.corsci.2020.109081
Nanoparticle Tracing during Laser Powder Bed Fusion of Oxide Dispersion Strengthened Steels
Yang, Y.; Doñate-Buendía, C.; Oyedeji, T. D.; Gökce, B.; Xu, B.-X.
2021. Materials, 14 (13), Article no: 3463. doi:10.3390/ma14133463
Protective Diffusion Coatings on Refractory Metals
Beck, K.; Ulrich, A. S.; Galetz, M. C.
2021. Materials Science and Technology: Technical Meeting and Exhibition (MS&T 2021), Colombus, USA, 17.–21. Oktober 2021
Flexible Powder Production for Additive Manufacturing of Refractory Metal-Based Alloys
Hinrichs, F.; Kauffmann, A.; Schliephake, D.; Seils, S.; Obert, S.; Ratschbacher, K.; Allen, M.; Pundt, A.; Heilmaier, M.
2021. Metals, 11 (11), Article no: 1723. doi:10.3390/met11111723
Flexible powder production for additive manufacturing of refractory metal alloys
Hinrichs, F.; Schliephake, D.; Seils, S.; Obert, S.; Kauffmann, A.; Ratschbacher, K.; Allen, M.; Heilmaier, M.
2021. Intermetallics (2021), Staffelstein, Deutschland, 4.–8. Oktober 2021
Protective Chromium Diffusion Coatings on Refractory Metals
Beck, K.; Ulrich, A. S.; Hinrichs, F.; Heilmaier, M.; Galetz, M. C.
2021. European Congress and Exhibition on Advanced Materials and Processes (EUROMAT 2021), Online, 13.–17. September 2021
Investigation of the Oxidation Resistance of ZrB2-based Monoliths Using Polymer-Derived Si(Zr,B)CN as Sintering Aid
Petry, N.-C.; Ulrich, A. S.; Feng, B.; Ionescu, E.; Galetz, M. C.; Lepple, M.
2021. European Congress and Exhibition on Advanced Materials and Processes (EUROMAT 2021), Online, 13.–17. September 2021
Protective Aluminum and Chromium Diffusion Coatings for Refractory Metals at High Temperature Exposure
Ulrich, A. S.; Beck, K.; Galetz, M. C.
2021. Intermetallics (2021), Staffelstein, Deutschland, 4.–8. Oktober 2021
The Creep and Oxidation Behaviour of Pesting-Resistant -Containing Eutectic-Eutectoid Mo-Si-Ti Alloys
Obert, S.; Kauffmann, A.; Pretzler, R.; Schliephake, D.; Hinrichs, F.; Heilmaier, M.
2021. Metals, 11 (1), Art.-Nr.: 169. doi:10.3390/met11010169
2020
Characterisation of the oxidation and creep behaviour of novel Mo-Si-Ti alloys
Obert, S.; Kauffmann, A.; Heilmaier, M.
2020. Acta materialia, 184, 132–142. doi:10.1016/j.actamat.2019.11.045
On the chemical and microstructural requirements for the pesting-resistance of Mo-Si-Ti alloys
Obert, S.; Kauffmann, A.; Seils, S.; Schellert, S.; Weber, M.; Gorr, B.; Christ, H.-J.; Heilmaier, M.
2020. Journal of materials research and technology, 9 (4), 8556–8567. doi:10.1016/j.jmrt.2020.06.002
2019
Constitution, oxidation and creep of eutectic and eutectoid Mo-Si-Ti alloys
Schliephake, D.; Kauffmann, A.; Cong, X.; Gombola, C.; Azim, M.; Gorr, B.; Christ, H.-J.; Heilmaier, M.
2019. Intermetallics, 104, 133–142. doi:10.1016/j.intermet.2018.10.028
2017
Phase-field simulation of the microstructure evolution in the eutectic NiAl-34Cr system
Kellner, M.; Sprenger, I.; Steinmetz, P.; Hötzer, J.; Nestler, B.; Heilmaier, M.
2017. Computational materials science, 128, 379–387. doi:10.1016/j.commatsci.2016.11.049
2016
Large-scale phase-field simulations of ternary eutectic microstructure evolution
Steinmetz, P.; Hötzer, J.; Kellner, M.; Dennstedt, A.; Nestler, B.
2016. Computational materials science, 117, 205–214. doi:10.1016/j.commatsci.2016.02.001
Phase-field simulations of spiral growth during directional ternary eutectic solidification
Hötzer, J.; Steinmetz, P.; Jainta, M.; Schulz, S.; Kellner, M.; Nestler, B.; Genau, A.; Dennstedt, A.; Bauer, M.; Köstler, H.; Rüde, U.
2016. Acta materialia, 106, 249–259. doi:10.1016/j.actamat.2015.12.052
2015
A method for coupling the phase-field model based on a grand-potential formalism to thermodynamic databases
Choudhury, A.; Kellner, M.; Nestler, B.
2015. Current opinion in solid state & materials science, 19 (5), 287–300. doi:10.1016/j.cossms.2015.03.003