Competence

In the framework of the research of the group "Production and Component Behaviour" the interactions between production processes, component state and component behaviour at mechanical loading are investigated. The goal of the investigations is to adjust the production process in such a way that an optimal component condition is achieved. The production processes considered are available either in the laboratories of production techniques of IAM-WK or within cooperation with institutes of production sciences. They are subdivided into the main groups of production processes according to DIN as follows:

Forming

  • Additive Manufacturing
  • Casting

Cutting

  • High Speed Cutting
  • Micromachining, Microerosion
  • Laser ablation

Chaning materials properties

  • Hardening and tempering of steels
  • Case hardening of steels
  • Inductive heat treatment
  • Laser beam hardening
  • Shot peening
  • Deep rolling

An essential focus of the work of the department " Production and Component Behavior" is the characterization of production-related component and material states. For this purpose, the central laboratories of Materialography and X-Ray Laboratory at IAM-WK are used to gain an insight into the microstructure, the residual stress state and defect structures.

In addition, facilities of the heat treatment laboratory and the laboratories for mechanical testing are used to determine the stability of the surface layer conditions under thermal, quasi-static, cyclic and combined loads. Furthermore, in the laboratories for mechanical testing, the effects of production-related component states on the strength, in particular the fatigue strength, of metallic and ceramic materials are investigated together with the department "Fatigue Strength".

An additional important main subject of the research of the section "Production and Component Behaviour" is the Simulation of the generation of production induced component states at different production steps. Here, different Finite-Element-Programs (Numerical Simulation) are used to describe especially thermo-mechanically coupled processes, if necessary including phase transformations. The necessary input data are determined experimentally (Laboratory of production techniques).


heat treatment mühl
Heat Treatment

Heat treatment from the main group "Changing material properties" includes processes or process chains for thermal, thermo-chemical and thermo-mechanical treatment of workpieces. The component properties, which are important in many applications, are adjusted by specific heating and cooling phases and the resulting phase transformations via the microstructure composition, the residual stress state and the hardness. In heat treatment, a fundamental distinction is made between processes that cause a radical structural transformation and processes that only cause a transformation on the surface of a workpiece. The first-mentioned processes include annealing and hardening, i.e. thermal processes. The second-mentioned processes count as diffusion and coating processes as well as thermochemical processes. The thermochemical surface hardening processes are mainly characterised in series production by a significant increase in surface hardness and lifetime at low unit costs. On the one hand, it is intended to achieve high surface layer hardness in order to minimize the wear. On the other hand, the microstructure and residual stress depth profiles are specifically adjusted, which usually leads to an extension of the durability. The current research focus is the optimization of heat treatment processes for components that are difficult to access. The adjustment of mixed microstructures to improve the mechanical properties is another important aspect. The goal is to improve fatigue properties compared to the conventional quenching and tempering processes by adjusting different microstructure components.

more
fub klumpp
Mechanical Surface Treatment

Mechanical surface treatment comprises a number of processes from the main manufacturing group "Modification of material properties", which are used to improve the component behaviour under operational loads. Mechanical surface treatments include, for example, shot peening, deep rolling, machine hammer peening, and some other processes that are used in customized industrial applications. The mechanical surface treatment of a component causes plastic deformation of its surface layer, resulting in local work hardening and the formation of residual compressive stresses. In particular, the processes deep rolling and machine hammer peening can also be used to smooth and structure surfaces due to their deterministic nature. A combination of smooth surface, work hardening and residual compressive stresses is particularly advantageous for improving the service life properties in the fatigue stress frequently encountered in mechanical, automotive and aircraft engineering. Structured surfaces, such as bionic ones, can also be created to optimize wear behavior. The focus of the research work in the department "Manufacturing and Component Behavior" is on the new and further development of processes, the identification of the relationships between process parameters, surface layer characteristics and component behavior, as well as numerical process simulation and modeling for the prediction of surface layer properties and component behavior. Furthermore, we deal with thermomechanical surface treatments, such as shot peening at elevated temperature or machine hammer peening under cryogenic conditions. Also in the context of additive manufacturing, mechanical surface treatments are used as final processes or processes switched within the build-up to optimize surface layer and component properties. This illustrates the intensive interdependence of the issues considered within the department "Production and component behaviour".

more
slm chuan
Additive Manufacturing

Additive manufacturing (AM) is characterized, in comparison to conventional manufacturing processes, by the layer-wise build-up of the three-dimensional shape of the component directly from the CAD geometry. Basic materials are metal powder, metal or polymer filaments as well as resins and inks which are consolidated by energy input or chemical cross-linking. The main energy sources used today are laser or electron beams and electrically or inductively heated extrusion heads. Due to the direct production of the component without geometry-bound tools or moulds, additive manufacturing plays a pioneering role, especially in the field of advanced manufacturing. The continuous digitalization and automation of the process chain, the products with high design complexity as well as the possibility of function integration enable additive manufacturing to be used more and more intensively as an innovative technology in various applications. Due to the layered build-up with a specific exposure or deposition strategy of the base material, additive manufactured components not only have a characteristic microstructure but also process-related defects (pores, voids, cracks). The knowledge of the underlying causes in connection with the process control as well as the effect on component properties and component behaviour is fundamental for the application of additively manufactured structural components. At the same time, the highly localised process zone (e.g. in the melt pool or during filament extrusion) offers the possibility of controlling the microstructure and defect structures in a targeted manner. This requires precise control of the temperature history and the exposure/deposition strategy from the melt pool via the individual layer to the entire component. Due to these complex dependencies in the process-structure-property relationships, especially the reproducibility and testing of additively manufactured components is still a largely open field of research.

more
simu iam-wk
Material Modelling and Process Simulation
ct iam-wk
Non-destructive Material Characterization

Publications


2024
Influences of laser remelting on mechanical performances of AISI4140 steel
Shi, C.; Schulze, V.; Dietrich, S.
2024. Materials Science and Technology, 40 (2), 107–119. doi:10.1177/02670836231212614
Comparison of Hardness and Residual Stresses in Multiline Laser Surface Hardening and Induction Hardening
Schüßler, P.; Nouri, N.; Lapouge, P.; Dietrich, S.; Schulze, V.
2024. Netsu-shori = Heat treatment / Nihon netsu shori gijutsu kyōkai, 64, 72–77
Improvement of an Electromagnetic-Thermal-Mechanical Coupled Simulation for the Optimization of Complex Processes in Induction Hardening
Dollhofer, B.
2024. Netsu-shori = Heat treatment / Nihon netsu shori gijutsu kyōkai, 64, 66–71
2023
Characterization of the Metal Fused Filament Fabrication Process for Manufacturing of Pure Copper Inductors
Schüßler, P.; Franke, J.; Czink, S.; Antusch, S.; Mayer, D.; Laube, S.; Hanemann, T.; Schulze, V.; Dietrich, S.
2023. Materials, 16 (20), Art.-Nr.: 6678. doi:10.3390/ma16206678
Room and elevated temperature tensile and fatigue behaviour of additively manufactured Hastelloy X
Shaji Karapuzha, A.; Fraser, D.; Schliephake, D.; Dietrich, S.; Zhu, Y.; Wu, X.; Huang, A.
2023. Materials Science and Engineering: A, 882, Art.-Nr.: 145479. doi:10.1016/j.msea.2023.145479
Effect of inter layer cold work on 2024 aluminium alloy produced by wire directed energy deposition
Eimer, E.; Ganguly, S.; Czink, S.; Dietrich, S.; Chehab, B.; Ding, J.; Williams, S.
2023. Materials Science and Engineering: A, 880, Artkl.Nr.: 145272. doi:10.1016/j.msea.2023.145272
Short-time induction heat treatment of high speed steel AISI M2: Laboratory proof of concept and application-related component tests
Damon, J.; Schüßler, P.; Mühl, F.; Dietrich, S.; Schulze, V.
2023. Materials & Design, 230, Artkl.Nr.: 111991. doi:10.1016/j.matdes.2023.111991
Influence of pores on the lifetime of die cast aluminium alloys studied by fracture mechanics and X-ray computed tomography
Streck, S.; Wiege, T.; Dietrich, S.; Herger, R.; Schulze, V.
2023. Engineering Fracture Mechanics, 284, Art.-Nr.: 109243. doi:10.1016/j.engfracmech.2023.109243
Laser surface hardening: A simulative study of tempering mechanisms on hardness and residual stress
Schüßler, P.; Damon, J.; Mühl, F.; Dietrich, S.; Schulze, V.
2023. Computational Materials Science, 221, Art.-Nr.: 112079. doi:10.1016/j.commatsci.2023.112079
Thermomechanical fatigue of additively manufactured 316L stainless steel
Babinský, T.; Šulák, I.; Kuběna, I.; Man, J.; Weiser, A.; Švábenská, E.; Englert, L.; Guth, S.
2023. Materials Science and Engineering: A, 869, Artkl.Nr.: 144831. doi:10.1016/j.msea.2023.144831
High cycle fatigue behaviour of AISI 4140 steel manufactured by laser-powder bed fusion
Shi, C.; Nouri, N.; Schulze, V.; Dietrich, S.
2023. International Journal of Fatigue, 168, Article no: 107469. doi:10.1016/j.ijfatigue.2022.107469
Process development for the hybrid additive manufacturing of metallic structures on polymer substrates
Czink, S.; Lubkowitz, V.; Dietrich, S.; Schulze, V.
2023. Additive Manufacturing Letters, Art.-Nr.: 100132. doi:10.1016/j.addlet.2023.100132
Tailored Hardness Profiles Through a Combination of Specialized PBF-LB Processing Strategies with Subsequent Heat Treatment for Graded High-Strength Components Made of Maraging Steel
Nouri, N.; Graf, G.; Dietrich, S.; Schulze, V.
2023. 28th Congress of the International Federation for Heat Treatment and Surface Engineering, IFHTSE 2023, International Federation for Heat Treatment and Surface Engineering (IFHTSE)
Comparison of Hardness and Residual Stresses in Multiline Laser Surface Hardening and Induction Hardening
Schüßler, P.; Nouri, N.; Dietrich, S.; Schulze, V.
2023. 28th Congress of the International Federation for Heat Treatment and Surface Engineering, IFHTSE 2023, International Federation for Heat Treatment and Surface Engineering (IFHTSE)
Characterization of phase transformation and strengthening mechanisms in a novel maraging steel produced using laser-based powder bed fusion
Nouri, N.; Li, Q.; Schneider, R.; Damon, J.; Schüßler, P.; Laube, S.; Müller, E.; Graf, G.; Schulze, V.; Dietrich, S.
2023. Materials Characterization, Art.Nr.: 113522. doi:10.1016/j.matchar.2023.113522
Effect of Heat Treatment on Fracture Behavior of AISI 630 Alloy Manufactured by Directed Energy Deposition
Wang, T.; Meng, K.; Liu, X.; Chen, S.; Zhang, J.; Shi, C.
2023. Advanced Engineering Materials, Art.-Nr.: 2201610. doi:10.1002/adem.202201610
2022
Semi-solid wire-feed additive manufacturing of AlSi7Mg by direct induction heating
Englert, L.; Klumpp, A.; Ausländer, A.; Schulze, V.; Dietrich, S.
2022. Additive Manufacturing Letters, 3, Article no: 100067. doi:10.1016/j.addlet.2022.100067
Ultrasonic evaluation of elastic properties in laser powder bed fusion manufactured AlSi10Mg components
Czink, S.; Dietrich, S.; Schulze, V.
2022. NDT & E International, 132, Article no: 102729. doi:10.1016/j.ndteint.2022.102729
Mechanical surface treatment of EBM Ti6Al4V components: Effects of the resulting surface layer state on fatigue mechanisms and service life
Damon, J.; Czink, S.; Schüßler, P.; Antusch, S.; Klein, A.; Send, S.; Dapprich, D.; Dietrich, S.; Schulze, V.
2022. Materials Science and Engineering: A, 849, Art.-Nr. 143422. doi:10.1016/j.msea.2022.143422
Effects of WC particles on microstructure and mechanical properties of 316L steel obtained by laser melting deposition
Li, H.; Hu, Y.; Di, R.; Yuan, R.; Shi, C.; Lei, J.
2022. Ceramics International, 48 (14), 20388–20399. doi:10.1016/j.ceramint.2022.03.324
Parameter optimization and mechanical properties of 42CrMo4 manufactured by laser powder bed fusion
Shi, C.; Dietrich, S.; Schulze, V.
2022. The International Journal of Advanced Manufacturing Technology, 121 (3-4), 1899–1913. doi:10.1007/s00170-022-09474-9
Simulationsgestützte Prozessoptimierung des Wärmebehandlungsverfahrens Internal Quenching. PhD dissertation
Mühl, F. A.
2022, May 13. Karlsruher Institut für Technologie (KIT). doi:10.5445/IR/1000145728
Material matters: predicting the core hardness variance in industrialized case hardening of 18CrNi8 [Vorhersage der Kernhärtenvarianz von industriell einsatzgehärtetem 18CrNi8]
Lingelbach, Y.; Waldenmaier, T.; Hagymasi, L.; Mikut, R.; Schulze, V.
2022. Materialwissenschaft und Werkstofftechnik, 53 (5), 576–589. doi:10.1002/mawe.202100249
Origin of non-uniform plasticity in a high-strength Al-Mn-Sc based alloy produced by laser powder bed fusion
Bayoumy, D.; Kwak, K.; Boll, T.; Dietrich, S.; Schliephake, D.; Huang, J.; Yi, J.; Takashima, K.; Wu, X.; Zhu, Y.; Huang, A.
2022. Journal of materials science & technology, 103, 121–133. doi:10.1016/j.jmst.2021.06.042
Characterization of a Novel Maraging Steel for Laser-Based Powder Bed Fusion: Optimization of Process Parameters and Post Heat Treatments
Nouri, N.; Li, Q.; Damon, J.; Mühl, F.; Graf, G.; Dietrich, S.; Schulze, V.
2022. Journal of Materials Research and Technology, 18, 931–942. doi:10.1016/j.jmrt.2022.02.126
Influence of Different Laser Irradiation Angle on Ni-Base Alloy Coatings Manufactured by Laser Melting Deposition
Jiao, T.; Chen, X.; Lei, J.; Shi, C.; Liu, G.
2022. Journal of Materials Engineering and Performance, 32 (13), 6072–6082. doi:10.1007/s11665-022-07517-6
Graphene nanoplatelets reinforced NiCu composite manufactured by laser melting deposition
Li, H.; Xia, Y.; Xie, M.; Shi, C.; Lei, J.
2022. Journal of Alloys and Compounds, 929, Art.-Nr.: 167261. doi:10.1016/j.jallcom.2022.167261
Laser-Based Additive Manufacturing and Characterization of an Open-Porous Ni-Based Metallic Glass Lattice Structure (Ni₆₀Nb₂₀Ta₂₀)
Dittmann, K.; Czink, S.; Dietrich, S.; Trauth, A.; Weidenmann, K. A.
2022. 3D Printing and Additive Manufacturing. doi:10.1089/3dp.2022.0118
Determination of constitutive friction laws appropriate for simulation of cutting processes
Schulze, V.; Bleicher, F.; Courbon, C.; Gerstenmeyer, M.; Meier, L.; Philipp, J.; Rech, J.; Schneider, J.; Segebade, E.; Steininger, A.; Wegener, K.
2022. CIRP Journal of Manufacturing Science and Technology, 38, 139–158. doi:10.1016/j.cirpj.2022.04.008
Hybrid material additive manufacturing: interlocking interfaces for fused filament fabrication on laser powder bed fusion substrates
Englert, L.; Heuer, A.; Engelskirchen, M. K.; Frölich, F.; Dietrich, S.; Liebig, W. V.; Kärger, L.; Schulze, V.
2022. Virtual and Physical Prototyping, 17 (3), 508–527. doi:10.1080/17452759.2022.2048228
How defects depend on geometry and scanning strategy in additively manufactured AlSi10Mg
Englert, L.; Czink, S.; Dietrich, S.; Schulze, V.
2022. Journal of materials processing technology, 299, Art.-Nr.: 117331. doi:10.1016/j.jmatprotec.2021.117331
2021
Transformation Plasticity in Carbonitrided PM-Steels: Quantification of Plasticity Effects in Dependence of the Part Density*
Damon, J. M.; Dietrich, S.; Schulze, V.
2021. HTM - journal of heat treatment and materials, 76 (6), 458–477. doi:10.1515/htm-2021-0021
Modelling and experimental validation of material deformation at different zones of welded structural-steel under multiaxial loading
Hemmesi, K.; Holey, H.; Elmoghazy, A.; Böhm, R.; Farajian, M.; Schulze, V.
2021. Materials Science and Engineering A, 824, Art.-Nr.: 140826. doi:10.1016/j.msea.2021.140826
Soft sensor approach based on magnetic Barkhausen noise by means of the forming process punch-hole-rolling
Mühl, F.; Knoll, M.; Khabou, M.; Dietrich, S.; Groche, P.; Schulze, V.
2021. Advances in industrial and manufacturing engineering, 2, Art.-Nr. 100039. doi:10.1016/j.aime.2021.100039
Microstructure, mechanical behaviour and strengthening mechanisms in Hastelloy X manufactured by electron beam and laser beam powder bed fusion
Karapuzha, A. S.; Fraser, D.; Schliephake, D.; Dietrich, S.; Zhu, Y.; Wu, X.; Huang, A.
2021. Journal of alloys and compounds, 862, Art.-Nr.: 158034. doi:10.1016/j.jallcom.2020.158034
In-situ observation of hydride formation in Mg films
Hamm, M.; Bongers-Loth, M. D.; Roddatis, V.; Dietrich, S.; Pundt, A.
2021. 17th International Conference on Diffusion in Solids and Liquids (DSL 2021), Valletta, Malta, June 28–July 2, 2021
Dual-Laser PBF-LB Processing of a High-Performance Maraging Tool Steel FeNiCoMoVTiAl
Graf, G.; Nouri, N.; Dietrich, S.; Zanger, F.; Schulze, V.
2021. Materials, 14 (15), Art.-Nr.: 4251. doi:10.3390/ma14154251
Influence of Cold Rotary Swaging on Microstructure and Uniaxial Mechanical Behavior in Alloy 718
Klumpp, A.; Kauffmann, A.; Seils, S.; Dietrich, S.; Schulze, V.
2021. Metallurgical and materials transactions / A, 52, 4331–4341. doi:10.1007/s11661-021-06371-w
High-cycle fatigue and surface layer stability of case-hardened PM-steels with graded porosity
Damon, J. M.; Jung, E.; Zürn, M.; Dietrich, S.; Schulze, V.
2021. Powder metallurgy, 64 (4), 262–272. doi:10.1080/00325899.2021.1901027
2020
Comparative Study of the Tempering Behavior of Different Martensitic Steels by Means of In-Situ Diffractometry and Dilatometry
Hunkel, M.; Dong, J.; Epp, J.; Kaiser, D.; Dietrich, S.; Schulze, V.; Rajaei, A.; Hallstedt, B.; Broeckmann, C.
2020. Materials, 13 (22), Art.-Nr.: 5058. doi:10.3390/ma13225058
Intensive processing optimization for achieving strong and ductile Al-Mn-Mg-Sc-Zr alloy produced by selective laser melting
Bayoumy, D.; Schliephake, D.; Dietrich, S.; Wu, X. H.; Zhu, Y. M.; Huang, A. J.
2020. Materials and design, 198, Art.Nr. 109317. doi:10.1016/j.matdes.2020.109317
Simulation of induction hardening: Simulative sensitivity analysis with respect to material parameters and the surface layer state
Mühl, F.; Damon, J.; Dietrich, S.; Schulze, V.
2020. Computational materials science, 184, Art. Nr.: 109916. doi:10.1016/j.commatsci.2020.109916
Tailored bainitic-martensitic microstructures by means of inductive surface hardening for AISI4140
Mühl, F.; Jarms, J.; Kaiser, D.; Dietrich, S.; Schulze, V.
2020. Materials and design, 195, Art.Nr. 108964. doi:10.1016/j.matdes.2020.108964
Experimental investigation and finite-element modeling of the short-time induction quench-and-temper process of AISI 4140
Kaiser, D.; Damon, J.; Mühl, F.; Graaff, B. de; Kiefer, D.; Dietrich, S.; Schulze, V.
2020. Journal of materials processing technology, 279, Article no: 116485. doi:10.1016/j.jmatprotec.2019.116485
SLM-Topo - Prozessspezifische Topologieoptimierungsmethode für im Selektiven Laserschmelzen gefertigte Leichtbaustrukturen
Holoch, J.; Czink, S.; Spadinger, M.; Dietrich, S.; Schulze, V.; Albers, A.
2020. Industrie 4.0 Management, 36 (4), 45
Mechanical Properties of Additively Manufactured Polymer Samples using a Piezo Controlled Injection Molding Unit and Fused Filament Fabrication compared with a Conventional Injection Molding Process
Pinter, P.; Baumann, S.; Lohr, C.; Heuer, A.; Englert, L.; Weidenmann, K. A.
2020. 29th Annual International Solid Freeform Fabrication Symposium - An Additive Manufacturing Conference, SFF 2018; The University of Texas in Austin, United States; 13 August 2018 through 15 August 2018, 2219–2227, Univ. of Texas
Non-destructive characterization of additively manufactured components using X-ray micro-computed tomography
Dietrich, S.; Englert, L.; Pinter, P.
2020. 29th Annual International Solid Freeform Fabrication Symposium - An Additive Manufacturing Conference, SFF 2018; The University of Texas in Austin; United States; 13 August 2018 through 15 August 2018, 241–250, Univ. of Texas
Design, fabrication and validation of an improved coil for induction dilatometry
Kaiser, D.; Torres-Velasquez, D.; Dietrich, S.; Schulze, V.
2020. Thermochimica acta, 689, Art.Nr. 178612. doi:10.1016/j.tca.2020.178612
2019
Laboratory X-ray tomography for metal additive manufacturing: Round robin test
Plessis, A. du; Roux, S. G. le; Waller, J.; Sperling, P.; Achilles, N.; Beerlink, A.; Métayer, J.-F.; Sinico, M.; Probst, G.; Dewulf, W.; Bittner, F.; Endres, H.-J.; Willner, M.; Drégelyi-Kiss, Á.; Zikmund, T.; Laznovsky, J.; Kaiser, J.; Pinter, P.; Dietrich, S.; Lopez, E.; Fitzek, O.; Konrad, P.
2019. Additive manufacturing, 30, Art.-Nr. 100837. doi:10.1016/j.addma.2019.100837
In situ observation of hydride nucleation and selective growth in magnesium thin-films with environmental transmission electron microscopy
Hamm, M.; Bongers, M. D.; Roddatis, V.; Dietrich, S.; Lang, K.-H.; Pundt, A.
2019. International journal of hydrogen energy, 44 (60), 32112–32123. doi:10.1016/j.ijhydene.2019.10.057
Orientation Dependent Fatigue Performance and Mechanisms of Selective Laser Melted Maraging Steel X3NiCoMoTi18-9-5
Damon, J.; Hanemann, T.; Dietrich, S.; Graf, G.; Lang, K.-H.; Schulze, V.
2019. International journal of fatigue, 127, 395–402. doi:10.1016/j.ijfatigue.2019.06.025
Process porosity and mechanical performance of fused filament fabricated 316L stainless steel
Damon, J.; Dietrich, S.; Gorantla, S.; Popp, U.; Okolo, B.; Schulze, V.
2019. Rapid prototyping journal, 25 (7), 1319–1327. doi:10.1108/RPJ-01-2019-0002
Process Development and Impact of Intrinsic Heat Treatment on the Mechanical Performance of Selective Laser Melted AISI 4140
Damon, J.; Koch, R.; Kaiser, D.; Graf, G.; Dietrich, S.; Schulze, V.
2019. Additive manufacturing, 28, 275–284. doi:10.1016/j.addma.2019.05.012
In-situ alloying of AlSi10Mg+Si using Selective Laser Melting to control the coefficient of thermal expansion
Hanemann, T.; Carter, L. N.; Habschied, M.; Adkins, N. J. E.; Attallah, M. M.; Heilmaier, M.
2019. Journal of alloys and compounds, 795, 8–18. doi:10.1016/j.jallcom.2019.04.260
Experimental and Simulative Studies on Residual Stress Formation for Laser-Beam Surface Hardening
Kiefer, D.; Schüssler, P.; Mühl, F.; Gibmeier, J.
2019. HTM - journal of heat treatment and materials, 74 (1), 23–35. doi:10.3139/105.110374
Optimization-based procedure for the determination of the constitutive model coefficients used in machining simulations
Cheng, W.; Outeiro, J.; Costes, J.-P.; M’Saoubi, R.; Karaouni, H.; Dietrich, S.; Marcon, B.; Rosa, P.
2019. Procedia CIRP, 82, 374–378. doi:10.1016/j.procir.2019.04.057
Influence of anisotropy of additively manufactured AlSi10Mg parts on chip formation during orthogonal cutting
Segebade, E.; Gerstenmeyer, M.; Dietrich, S.; Zanger, F.; Schulze, V.
2019. Procedia CIRP, 82, 113–118. doi:10.1016/j.procir.2019.04.043
Internal Quenching: Optimale Wärmebehandlung für schwer zugängliche Bauteilbereiche
Muehl, F.; Dietrich, S.; Schulze, V.
2019. HTM - journal of heat treatment and materials, 74 (3), 191–201. doi:10.3139/105.110382
2018
On a Simulation Tool for Predicting the Complex FFF 3D Printing Process of Semi-Crystalline Thermoplastics
Dollhofer, B.; Damon, J.; Scholz, J.; Popp, U.; Dietrich, S.; Okolo, B.
2018. DDMC 2018 : Fraunhofer Direct Digital Manufacturing Conference : proceedings : Direct Digital Manufacturing Conference, Berlin, March 14-15, 2018, 77–80, Fraunhofer Verlag
SLM-Topo – A topology optimization method for additive manufacturing of lightweight design structures using the selective laser melting process
Albers, A.; Holoch, J.; Dietrich, S.; Spadinger, M.
2018. Exploring the Design Freedom of Additive Manufacturing through Simulation, Helsinki, FIN, December 10-11, 2018, 62–63
Investigation of the precipitation kinetics and microstructure evolution of martensitic AISI 4140 steel during tempering with high heating rates
Kaiser, D.; Graaff, B. de; Dietrich, S.; Schulze, V.
2018. (F. Delaunois, V. Vitry & F. Roudet, Eds.) Metallurgical research & technology, 115 (4), Art. Nr.: 404. doi:10.1051/metal/2018026
A Comparative Study of Kinetic Models Regarding Bainitic Transformation Behavior in Carburized Case Hardening Steel 20MnCr5
Damon, J.; Mühl, F.; Dietrich, S.; Schulze, V.
2018. Metallurgical and materials transactions / A, 1–14. doi:10.1007/s11661-018-5004-6
Influence of work-hardening on fatigue crack growth, effective threshold and crack opening behavior in the nickel-based superalloy Inconel 718
Klumpp, A.; Maier, S.; Chen, H.; Fotouhi, M.; Schneider, R.; Dietrich, S.; Lang, K.-H.; Schulze, V.
2018. International journal of fatigue, 116, 257–267. doi:10.1016/j.ijfatigue.2018.06.033
Process dependent porosity and the influence of shot peening on porosity morphology regarding selective laser melted AlSi10Mg parts
Damon, J.; Dietrich, S.; Vollert, F.; Gibmeier, J.; Schulze, V.
2018. Additive manufacturing, 20, 77–89. doi:10.1016/j.addma.2018.01.001
2017
Surface strengthening of AISI 4140 by cavitation peening
Klumpp, A.; Lienert, F.; Dietrich, S.; Soyama, H.; Schulze, V.
2017. ICSP13 : 13th International Conference on Shot Peening : 18-21 September 2017, Montréal, Canada., 441–446, Polytechnique Montréal
Influence of conventional and cryogenic piezo peening on bending fatigue strength of hardened bearing steel AISI 52100
Klumpp, A.; Tamam, M.; Vollert, F.; Dietrich, S.; Schulze, V.
2017. ICSP13 : 13th International Conference on Shot Peening : 18-21 September 2017, Montréal, Canada, 435–440, Montreal
Micron‐Sized Pored Membranes Based on Polyvinylidene Difluoride Hexafluoropropylene Prepared by Phase Inversion Techniques
Hofmann, A.; Thißen, E.; Migeot Matthias; Bohn, N.; Dietrich, S.; Hanemann, T.
2017. Polymers, 9 (10), 489/1–12. doi:10.3390/polym9100489
Rigidity and damage evolution of long fibre reinforced polypropylene made by direct processing route (LFT-D)
Weidenmann, K. A.; Dietrich, S.; Grigo, M.; Elsner, P.
2017. 21st Symposium on Composites, 2017; Bremen; Germany; 5 July 2017 through 7 July 2017. Ed.: A. S. Herrmann, 3–8, Trans Tech Publications. doi:10.4028/www.scientific.net/KEM.742.3
Influence of shot peening on the mechanical properties of bulk amorphous Vitreloy 105*
Grell, D.; Gibmeier, J.; Dietrich, S.; Silze, F.; Böhme, L.; Schulze, V.; Kühn, U.; Kerscher, E.
2017. Surface engineering, 33 (9), 721–730. doi:10.1080/02670844.2017.1282712
2016
Residual Stress States After Piezo Peening Treatment at Cryogenic and Elevated Temperatures Predicted by FEM Using Suitable Material Models
Klumpp, A.; Tamam, M.; Lienert, F.; Dietrich, S.; Gibmeier, J.; Schulze, V.
2016. Materials research proceedings, 175–180. doi:10.21741/9781945291173-30
Performance and Properties of an Additive Manufactured Coil for Inductive Heat Treatment in the MHz Range
Habschied, M.; Dietrich, S.; Heussen, D.; Schulze, V.
2016. HTM - journal of heat treatment and materials, 71 (5), 212–217. doi:10.3139/105.110294
2015
Residual Stresses after Piezo Peening Treatment predicted by FEM Simulation
Klumpp, A.; Lienert, F.; Dietrich, S.; Schulze, V.
2015. Proceedings : 5th International Conference on Distortion Engineering 2015, Bremen, Germany, 23 - 25 September 2015 / eds. H.-W. Zoch, Th. Lübben ; organised by IWT, 105–115, IWT
Interpenetrating Freeze Cast Composites: Correlation between Structural and Mechanical Characteristics
Merzkirch, M.; Pinter, P.; Dietrich, S.; Weidenmann, K. A.
2015. 20th Symposium on Composites, Vienna, Austria, July 1-3. Ed.: Ch. Edtmaier, 109–116, Trans Tech Publications. doi:10.4028/www.scientific.net/MSF.825-826
Dependence of the local heat transfer coefficient on temperature and surface roughness in quenching steel parts in high efficiency quenching oil
Moch, K.; Dietrich, S.; Schulze, V.
2015. Heat treatment and surface engineering: from tradition to innovation : European Conference on Heat Treatment 2015 & 22nd IFHTSE congress ; Venice (Italy), 20 - 22 May 2015, CD-ROM, AIM
2014
Numerical Simulation of Micropeening of quenched and tempered AISI 4140
Erz, A.; Klumpp, A.; Hoffmeister, J.; Schulze, V.
2014. ICSP12 : proceedings of the 12th International Conference on Shot Peening : Goslar, Germany, September 15-18, 2014 / editor Lothar Wagner, Chairman of ICSP-12, Institute of Materials Science and Engineering, Clausthal University of Technology, Germany, 353–358, Lothar Wagner
Mechanical Surface Treatments
Klumpp, A.; Hoffmeister, J.; Schulze, V.
2014. ICSP12 : proceedings of the 12th International Conference on Shot Peening : Goslar, Germany, September 15-18, 2014 / editor Lothar Wagner, Chairman of ICSP-12, Institute of Materials Science and Engineering, Clausthal University of Technology, Germany, 12–24, Lothar Wagner